Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Annu Rev Immunol ; 38: 541-566, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017635

RESUMO

Naturally occurring CD4+ regulatory T cells (Tregs), which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a functionally distinct T cell subpopulation actively engaged in the maintenance of immunological self-tolerance and homeostasis. Recent studies have facilitated our understanding of the cellular and molecular basis of their generation, function, phenotypic and functional stability, and adaptability. It is under investigation in humans how functional or numerical Treg anomalies, whether genetically determined or environmentally induced, contribute to immunological diseases such as autoimmune diseases. Also being addressed is how Tregs can be targeted to control physiological and pathological immune responses, for example, by depleting them to enhance tumor immunity or by expanding them to treat immunological diseases. This review discusses our current understanding of Treg immunobiology in normal and disease states, with a perspective on the realization of Treg-targeting therapies in the clinic.


Assuntos
Suscetibilidade a Doenças , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Doenças Autoimunes/terapia , Autoimunidade , Biomarcadores , Gerenciamento Clínico , Humanos , Ativação Linfocitária/imunologia , Terapia de Alvo Molecular , Tolerância a Antígenos Próprios/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
Immunity ; 54(5): 947-961.e8, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33930308

RESUMO

The transcription factor Foxp3 plays crucial roles for Treg cell development and function. Conserved non-coding sequences (CNSs) at the Foxp3 locus control Foxp3 transcription, but how they developmentally contribute to Treg cell lineage specification remains obscure. Here, we show that among Foxp3 CNSs, the promoter-upstream CNS0 and the intergenic CNS3, which bind distinct transcription factors, were activated at early stages of thymocyte differentiation prior to Foxp3 promoter activation, with sequential genomic looping bridging these regions and the promoter. While deletion of either CNS0 or CNS3 partially compromised thymic Treg cell generation, deletion of both completely abrogated the generation and impaired the stability of Foxp3 expression in residual Treg cells. As a result, CNS0 and CNS3 double-deleted mice succumbed to lethal systemic autoimmunity and inflammation. Thus, hierarchical and coordinated activation of Foxp3 CNS0 and CNS3 initiates and stabilizes Foxp3 gene expression, thereby crucially controlling Treg cell development, maintenance, and consequently immunological self-tolerance.


Assuntos
Elementos Facilitadores Genéticos/imunologia , Fatores de Transcrição Forkhead/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Tolerância Imunológica/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/imunologia , Tolerância a Antígenos Próprios/imunologia
4.
Nat Immunol ; 18(2): 173-183, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27992401

RESUMO

Most Foxp3+ regulatory T (Treg) cells develop in the thymus as a functionally mature T cell subpopulation specialized for immune suppression. Their cell fate appears to be determined before Foxp3 expression; yet molecular events that prime Foxp3- Treg precursor cells are largely obscure. We found that Treg cell-specific super-enhancers (Treg-SEs), which were associated with Foxp3 and other Treg cell signature genes, began to be activated in Treg precursor cells. T cell-specific deficiency of the genome organizer Satb1 impaired Treg-SE activation and the subsequent expression of Treg signature genes, causing severe autoimmunity due to Treg cell deficiency. These results suggest that Satb1-dependent Treg-SE activation is crucial for Treg cell lineage specification in the thymus and that its perturbation is causative of autoimmune and other immunological diseases.


Assuntos
Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Linfócitos T Reguladores/fisiologia , Ativação Transcricional/imunologia , Animais , Autoimunidade , Linhagem da Célula , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Tolerância Imunológica , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Células Precursoras de Linfócitos T/fisiologia
5.
Immunity ; 52(6): 1119-1132.e4, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32362325

RESUMO

The contribution of FOXP3-expressing naturally occurring regulatory T (Treg) cells to common polygenic autoimmune diseases remains ambiguous. Here, we characterized genome-wide epigenetic profiles (CpG methylation and histone modifications) of human Treg and conventional T (Tconv) cells in naive and activated states. We found that single-nucleotide polymorphisms (SNPs) associated with common autoimmune diseases were predominantly enriched in CpG demethylated regions (DRs) specifically present in naive Treg cells but much less enriched in activation-induced DRs common in Tconv and Treg cells. Naive Treg cell-specific DRs were largely included in Treg cell-specific super-enhancers and closely associated with transcription and other epigenetic changes in naive and effector Treg cells. Thus, naive Treg cell-specific CpG hypomethylation had a key role in controlling Treg cell-specific gene transcription and epigenetic modification. The results suggest possible contribution of altered function or development of natural Treg cells to the susceptibility to common autoimmune diseases.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Epigênese Genética , Epigenômica , Predisposição Genética para Doença , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Biologia Computacional , Ilhas de CpG , Metilação de DNA , Epigenômica/métodos , Perfilação da Expressão Gênica , Variação Genética , Humanos , Imunofenotipagem , Polimorfismo de Nucleotídeo Único , Subpopulações de Linfócitos T , Linfócitos T Reguladores/citologia , Transcriptoma
6.
Immunity ; 50(5): 1232-1248.e14, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31027998

RESUMO

Regulatory T cells (Treg cells) are important for preventing autoimmunity and maintaining tissue homeostasis, but whether Treg cells can adopt tissue- or immune-context-specific suppressive mechanisms is unclear. Here, we found that the enzyme hydroxyprostaglandin dehydrogenase (HPGD), which catabolizes prostaglandin E2 (PGE2) into the metabolite 15-keto PGE2, was highly expressed in Treg cells, particularly those in visceral adipose tissue (VAT). Nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ)-induced HPGD expression in VAT Treg cells, and consequential Treg-cell-mediated generation of 15-keto PGE2 suppressed conventional T cell activation and proliferation. Conditional deletion of Hpgd in mouse Treg cells resulted in the accumulation of functionally impaired Treg cells specifically in VAT, causing local inflammation and systemic insulin resistance. Consistent with this mechanism, humans with type 2 diabetes showed decreased HPGD expression in Treg cells. These data indicate that HPGD-mediated suppression is a tissue- and context-dependent suppressive mechanism used by Treg cells to maintain adipose tissue homeostasis.


Assuntos
Dinoprostona/análogos & derivados , Dinoprostona/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , Gordura Intra-Abdominal/imunologia , Linfócitos T Reguladores/enzimologia , Linfócitos T Reguladores/imunologia , Células 3T3 , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Células HEK293 , Homeostase/imunologia , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Resistência à Insulina/genética , Gordura Intra-Abdominal/citologia , Células Jurkat , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Knockout , Fator de Transcrição STAT5/metabolismo
7.
Int Immunol ; 36(4): 167-182, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38169425

RESUMO

Forkhead box P3 (Foxp3)-expressing regulatory T (Treg) cells play essential roles in immune homeostasis but also contribute to establish a favorable environment for tumor growth by suppressing anti-tumor immune responses. It is thus necessary to specifically target tumor-infiltrating Treg cells to minimize effects on immune homeostasis in cancer immunotherapy. However, molecular features that distinguish tumor-infiltrating Treg cells from those in secondary lymphoid organs remain unknown. Here we characterize distinct features of tumor-infiltrating Treg cells by global analyses of the transcriptome and chromatin landscape. They exhibited activated phenotypes with enhanced Foxp3-dependent transcriptional regulation, yet being distinct from activated Treg cells in secondary lymphoid organs. Such differences may be attributed to the extensive clonal expansion of tumor-infiltrating Treg cells. Moreover, we found that TCF7 and LEF1 were specifically downregulated in tumor-infiltrating Treg cells both in mice and humans. These factors and Foxp3 co-occupied Treg suppressive function-related gene loci in secondary lymphoid organ Treg cells, whereas the absence of TCF7 and LEF1 accompanied altered gene expression and chromatin status at these gene loci in tumor-infiltrating Treg cells. Functionally, overexpression of TCF7 and LEF1 in Treg cells inhibited the enhancement of Treg suppressive function upon activation. Our results thus show the downregulation of TCF7 and LEF1 as markers of highly suppressive Treg cells in tumors and suggest that their absence controls the augmentation of Treg suppressive function in tumors. These molecules may be potential targets for novel cancer immunotherapy with minimum effects on immune homeostasis.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Cromatina/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35140181

RESUMO

Foxp3-expressing CD25+CD4+ regulatory T cells (Tregs) are abundant in tumor tissues. Here, hypothesizing that tumor Tregs would clonally expand after they are activated by tumor-associated antigens to suppress antitumor immune responses, we performed single-cell analysis on tumor Tregs to characterize them by T cell receptor clonotype and gene-expression profiles. We found that multiclonal Tregs present in tumor tissues predominantly expressed the chemokine receptor CCR8. In mice and humans, CCR8+ Tregs constituted 30 to 80% of tumor Tregs in various cancers and less than 10% of Tregs in other tissues, whereas most tumor-infiltrating conventional T cells (Tconvs) were CCR8- CCR8+ tumor Tregs were highly differentiated and functionally stable. Administration of cell-depleting anti-CCR8 monoclonal antibodies (mAbs) indeed selectively eliminated multiclonal tumor Tregs, leading to cure of established tumors in mice. The treatment resulted in the expansion of CD8+ effector Tconvs, including tumor antigen-specific ones, that were more activated and less exhausted than those induced by PD-1 immune checkpoint blockade. Anti-CCR8 mAb treatment also evoked strong secondary immune responses against the same tumor cell line inoculated several months after tumor eradication, indicating that elimination of tumor-reactive multiclonal Tregs was sufficient to induce memory-type tumor-specific effector Tconvs. Despite induction of such potent tumor immunity, anti-CCR8 mAb treatment elicited minimal autoimmunity in mice, contrasting with systemic Treg depletion, which eradicated tumors but induced severe autoimmune disease. Thus, specific removal of clonally expanding Tregs in tumor tissues for a limited period by cell-depleting anti-CCR8 mAb treatment can generate potent tumor immunity with long-lasting memory and without deleterious autoimmunity.


Assuntos
Memória Imunológica , Neoplasias/metabolismo , Receptores CCR8/metabolismo , Animais , Anticorpos Monoclonais , Biomarcadores Tumorais , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Receptores CCR8/genética , Linfócitos T Reguladores
10.
Cancer Sci ; 114(4): 1256-1269, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36529525

RESUMO

We previously reported that regulatory T (Treg) cells expressing CTLA-4 on the cell surface are abundant in head and neck squamous cell carcinoma (HNSCC). The role of expanded Treg cells in the tumor microenvironment of HNSCC remains unclear. In this study, we reveal that the tumor microenvironment of HNSCC is characterized by the high expression of genes related to Treg cells, dendritic cells (DCs), and interleukin (IL)-17-related molecules. Increased expression of IL17A, IL17F, or IL23A contributes to a favorable prognosis of HNSCC. In the tumor microenvironment of HNSCC, IL23A and IL12B are expressed in mature dendritic cells enriched in regulatory molecules (mregDCs). The mregDCs in HNSCC are a migratory and mature phenotype; their signature genes strongly correlate with Treg signature genes in HNSCC. We also observed that IL17A was highly expressed in Th17 cells and exhausted CD8+ T cells in HNSCC. These data suggest that mregDCs in HNSCC may contribute to the prognosis by balancing Treg cells and effector T cells that produce IL-17. Targeting mregDCs may be a novel strategy for developing new immune therapies against HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Linfócitos T Reguladores , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Prognóstico , Células Dendríticas , Microambiente Tumoral
11.
Immunity ; 41(5): 722-36, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25464853

RESUMO

Regulatory T (Treg) cells maintain immune homeostasis and prevent inflammatory and autoimmune responses. During development, thymocytes bearing a moderately self-reactive T cell receptor (TCR) can be selected to become Treg cells. Several observations suggest that also in the periphery mature Treg cells continuously receive self-reactive TCR signals. However, the importance of this inherent autoreactivity for Treg cell biology remains poorly defined. To address this open question, we genetically ablated the TCR of mature Treg cells in vivo. These experiments revealed that TCR-induced Treg lineage-defining Foxp3 expression and gene hypomethylation were uncoupled from TCR input in mature Treg cells. However, Treg cell homeostasis, cell-type-specific gene expression and suppressive function critically depend on continuous triggering of their TCR.


Assuntos
Autoimunidade/imunologia , Fatores de Transcrição Forkhead/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Metilação de DNA/imunologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Inflamação/imunologia , Fatores Reguladores de Interferon/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multiproteicos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/metabolismo , Timócitos/citologia
12.
Proc Natl Acad Sci U S A ; 117(22): 12258-12268, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414925

RESUMO

Foxp3-expressing regulatory T cells (Tregs) can be generated in vitro by antigenic stimulation of conventional T cells (Tconvs) in the presence of TGF-ß and IL-2. However, unlike Foxp3+ naturally occurring Tregs, such in vitro induced Tregs (iTregs) are functionally unstable mainly because of incomplete Treg-type epigenetic changes at Treg signature genes such as Foxp3 Here we show that deprivation of CD28 costimulatory signal at an early stage of iTreg generation is able to establish Treg-specific DNA hypomethylation at Treg signature genes. It was achieved, for example, by TCR/TGF-ß/IL-2 stimulation of CD28-deficient Tconvs or CD28-intact Tconvs without anti-CD28 agonistic mAb or with CD80/CD86-blocked or -deficient antigen-presenting cells. The signal abrogation could induce Treg-type hypomethylation in memory/effector as well as naive Tconvs, while hindering Tconv differentiation into effector T cells. Among various cytokines and signal activators/inhibitors, TNF-α and PKC agonists inhibited the hypomethylation. Furthermore, CD28 signal deprivation significantly reduced c-Rel expression in iTregs; and the specific genomic perturbation of a NF-κB binding motif at the Foxp3 CNS2 locus enhanced the locus-specific DNA hypomethylation even in CD28 signaling-intact iTregs. In addition, in vitro maintenance of such epigenome-installed iTregs with IL-2 alone, without additional TGF-ß or antigenic stimulation, enabled their expansion and stabilization of Treg-specific DNA hypomethylation. These iTregs indeed stably expressed Foxp3 after in vivo transfer and effectively suppressed antigen-specific immune responses. Taken together, inhibition of the CD28-PKC-NF-κB signaling pathway in iTreg generation enables de novo acquisition of Treg-specific DNA hypomethylation at Treg signature genes and abundant production of functionally stable antigen-specific iTregs for therapeutic purposes.


Assuntos
Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/imunologia , Metilação de DNA , Epigênese Genética , Fatores de Transcrição Forkhead/fisiologia , Regulação da Expressão Gênica , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Feminino , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(34): 20696-20705, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32769209

RESUMO

Regulatory T (Treg) cells, expressing CD25 (interleukin-2 receptor α chain) and Foxp3 transcription factor, maintain immunological self-tolerance and suppress various immune responses. Here we report a feature of skin Treg cells expanded by ultraviolet B (UVB) exposure. We found that skin Treg cells possessing a healing function are expanded by UVB exposure with the expression of an endogenous opioid precursor, proenkephalin (PENK). Upon UVB exposure, skin Treg cells were expanded with a unique TCR repertoire. Also, they highly expressed a distinctive set of genes enriched in "wound healing involved in inflammatory responses" and the "neuropeptide signaling pathway," as indicated by the high expression of Penk. We found that not only was PENK expression at the protein level detected in the UVB-expanded skin Treg (UVB-skin Treg) cells, but that a PENK-derived neuropeptide, methionine enkephalin (Met-ENK), from Treg cells promoted the outgrowth of epidermal keratinocytes in an ex vivo skin explant assay. Notably, UVB-skin Treg cells also promoted wound healing in an in vivo wound closure assay. In addition, UVB-skin Treg cells produced amphiregulin (AREG), which plays a key role in Treg-mediated tissue repair. Identification of a unique function of PENK+ UVB-skin Treg cells provides a mechanism for maintaining skin homeostasis.


Assuntos
Encefalinas/metabolismo , Precursores de Proteínas/metabolismo , Linfócitos T Reguladores/metabolismo , Cicatrização/fisiologia , Anfirregulina/metabolismo , Animais , Células Cultivadas , Encefalina Metionina/metabolismo , Encefalinas/efeitos da radiação , Feminino , Homeostase/fisiologia , Humanos , Tolerância Imunológica/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Precursores de Proteínas/efeitos da radiação , Tolerância a Antígenos Próprios/imunologia , Pele/metabolismo , Raios Ultravioleta , Cicatrização/imunologia
14.
Bioinformatics ; 37(10): 1465-1467, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33017003

RESUMO

SUMMARY: The possibility that RNA transcripts from clinical samples contain plenty of virus RNAs has not been pursued actively so far. We here developed a new tool for analyzing virus-transcribed mRNAs, not virus copy numbers, in the data of bulk and single-cell RNA-sequencing of human cells. Our pipeline, named VIRTUS (VIRal Transcript Usage Sensor), was able to detect 762 viruses including herpesviruses, retroviruses and even SARS-CoV-2 (COVID-19), and quantify their transcripts in the sequence data. This tool thus enabled simultaneously detecting infected cells, the composition of multiple viruses within the cell, and the endogenous host-gene expression profile of the cell. This bioinformatics method would be instrumental in addressing the possible effects of covertly infecting viruses on certain diseases and developing new treatments to target such viruses. AVAILABILITY AND IMPLEMENTATION: : VIRTUS is implemented using Common Workflow Language and Docker under a CC-NC license. VIRTUS is freely available at https://github.com/yyoshiaki/VIRTUS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
COVID-19 , Software , Humanos , RNA-Seq , SARS-CoV-2 , Análise de Sequência de RNA
15.
Immunity ; 38(3): 414-23, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23521883

RESUMO

Regulatory T (Treg) cells are a developmentally and functionally distinct T cell subpopulation that is engaged in sustaining immunological self-tolerance and homeostasis. The transcription factor Foxp3 plays a key role in Treg cell development and function. However, expression of Foxp3 alone is not sufficient for conferring and maintaining Treg cell function and phenotype. Complementing the insufficiency, Treg-cell-specific epigenetic changes are also critical in the process of Treg cell specification, in regulating its potential plasticity, and hence in establishing a stable lineage. Understanding how epigenetic alterations and Foxp3 expression coordinately control Treg-cell-specific gene regulation will enable better control of immune responses by targeting the generation and maintenance of Treg cells.


Assuntos
Epigênese Genética , Epigenômica , Fatores de Transcrição Forkhead/genética , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição Forkhead/imunologia , Homeostase/genética , Homeostase/imunologia , Humanos , Modelos Genéticos , Modelos Imunológicos , Tolerância a Antígenos Próprios/genética , Tolerância a Antígenos Próprios/imunologia , Linfócitos T Reguladores/imunologia
16.
Nat Immunol ; 10(7): 685-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19536192
17.
Int Immunol ; 32(5): 347-357, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31950169

RESUMO

OBJECTIVE: CD4+CD8+ T cells are expressed in some cancer patients including those with renal cell carcinoma (RCC). However, no reports have mentioned the clinical importance of this expression. We evaluated the expression of CD4+CD8+ T cells in patients with various cancer types to clarify clinical characteristics and prognostic importance significantly correlating with these T cells. METHODS: Expression of CD4+CD8+ T cells was evaluated using flowcytometry in tissue-infiltrating lymphocytes extracted from 260 cancer tissues including 104 RCC samples. RNA sequencing and characterization and regression (Citrus) was used to determine characteristics. The prognostic importance of CD4+CD8+ T cells was evaluated by Cox regression analysis. RESULTS: Among eight cancer types, expression of CD4+CD8+ T cells was significantly highest in RCC patients. According to the expression of CD4+CD8+ T cells in adjacent normal tissue-infiltrating lymphocytes, 24 patients (23.1%) were defined as being positive for CD4+CD8+ with an expression higher than 9.29% in RCC patients. Citrus showed CD8+PD-1+TIM-3+CD103- T cells to be a specific subpopulation of CD4+CD8+ T cells. RNA sequencing revealed that CD4+CD8+ T cells had significantly lower diversity than the other T cells and shared most T-cell receptor clones with CD8+ not CD4+ T cells. Expression of CD4+CD8+ T cells was identified as an independent predictor of overall survival (hazard ratio: 0.11, 95% confidence interval: 0.01-0.86, P = 0.035) in multivariate analysis. CONCLUSIONS: The expression of CD4+CD8+ T cells was significantly up-regulated in RCC patients and correlated significantly with prognostic importance in surgically treated RCC patients.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Renais/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Immunity ; 37(3): 443-4, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22999950

RESUMO

Foxp3(+) Treg cells express transcription factors normally expressed by specific T helper cells at sites of inflammation. In this issue of Immunity, Koch et al. (2012) and Hall et al. (2012) demonstrate that IFN-γ and IL-27 distinctly induces T-bet(+) Treg cells via STAT-1 transcription factor activation.

19.
Immunity ; 37(5): 785-99, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23123060

RESUMO

The transcription factor Foxp3 is essential for the development of regulatory T (Treg) cells, yet its expression is insufficient for establishing the Treg cell lineage. Here we showed that Treg cell development was achieved by the combination of two independent processes, i.e., the expression of Foxp3 and the establishment of Treg cell-specific CpG hypomethylation pattern. Both events were induced by T cell receptor stimulation. The Treg cell-type CpG hypomethylation began in the thymus and continued to proceed in the periphery and could be fully established without Foxp3. The hypomethylation was required for Foxp3(+) T cells to acquire Treg cell-type gene expression, lineage stability, and full suppressive activity. Thus, those T cells in which the two events have concurrently occurred are developmentally set into the Treg cell lineage. This model explains how Treg cell fate and plasticity is controlled and can be exploited to generate functionally stable Treg cells.


Assuntos
Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Metilação de DNA , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Histonas/genética , Histonas/imunologia , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Timo/imunologia , Timo/metabolismo
20.
Int Immunol ; 31(5): 335-347, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30726915

RESUMO

Ten-eleven translocation (TET) proteins regulate DNA methylation and gene expression by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Although Tet2/Tet3 deficiency has been reported to lead to myeloid cell, B-cell and invariant natural killer T (iNKT) cell malignancy, the effect of TET on regulatory T cells (Tregs) has not been elucidated. We found that Tet2/Tet3 deficiency in Tregs led to lethal hyperproliferation of CD4+Foxp3+ T cells in the spleen and mesenteric lymph nodes after 5 months of age. Additionally, in aged Treg-specific Tet2/Tet3-deficient mice, serum IgG1, IgG3, IgM and IgE levels were markedly elevated. High IL-17 expression was observed in both Foxp3+ and Fopx3- CD4+ T cells, and adoptive transfer of Tet2/Tet3-deficient Tregs into lymphopenic mice inhibited Foxp3 expression and caused conversion into IL-17-producing cells. However, the conserved non-coding DNA sequence-2 (CNS2) region of the Foxp3 gene locus, which has been shown to be particularly important for stable Foxp3 expression, was only partly methylated. We identified novel TET-dependent demethylation sites in the Foxp3 upstream enhancer, which may contribute to stable Foxp3 expression. Together, these data indicate that Tet2 and Tet3 are involved in Treg stability and immune homeostasis in mice.


Assuntos
Proteínas de Ligação a DNA/imunologia , Dioxigenases/imunologia , Fatores de Transcrição Forkhead/metabolismo , Interleucina-17/biossíntese , Proteínas Proto-Oncogênicas/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Animais , Proliferação de Células , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA