RESUMO
All-trans retinoic acid (atRA), a metabolite of vitamin A, reduces hepatic lipid accumulation in liver steatosis model animals. Lipophagy, a new lipolysis pathway, degrades a lipid droplet (LD) via autophagy in adipose tissue and the liver. We recently found that atRA induces lipophagy in adipocytes. However, it remains unclear whether atRA induces lipophagy in hepatocytes. In this study, we investigated the effects of atRA on lipophagy in Hepa1c1c7 cells and the liver of mice fed a high-fat diet (HFD). First, we confirmed that atRA induced autophagy in Hepa1c1c7 cells by Western blotting and the GFP-LC3-mCherry probe. Next, we evaluated the lipolysis in fatty Hepa1c1c7 cells treated with the knockdown of Atg5, an essential gene in autophagy induction. Atg5-knockdown partly suppressed the atRA-induced lipolysis in fatty Hepa1c1c7 cells. We also found that atRA reduced the protein, but not mRNA, expression of Rubicon, a negative regulator of autophagy, in Hepa1c1c7 cells and the liver of HFD-fed mice. Rubicon-knockdown partly inhibited the atRA-induced lipolysis in fatty Hepa1c1c7 cells. In addition, atRA reduced hepatic Rubicon expression in young mice, but the effect of atRA on it diminished in aged mice. Finally, we investigated the mechanism underlying reduced Rubicon protein expression by atRA in hepatocytes. A protein synthesis inhibitor, but not proteasome or lysosomal inhibitors, significantly blocked the reduction of Rubicon protein expression by atRA in Hepa1c1c7 cells. These results suggest that atRA may promote lipophagy in fatty hepatocytes by reducing hepatic Rubicon expression via inhibiting protein synthesis.
Assuntos
Autofagia , Lipólise , Tretinoína , Animais , Tretinoína/farmacologia , Camundongos , Autofagia/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/citologia , Masculino , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/efeitos dos fármacos , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
Zinc (Zn) is an essential trace element in various biological processes. Chronic kidney disease (CKD) often leads to hypozincemia, resulting in further progression of CKD. In CKD, intestinal Zn absorption, the main regulator of systemic Zn metabolism, is often impaired; however, the mechanism underlying Zn malabsorption remains unclear. Here, we evaluated intestinal Zn absorption capacity in a rat model of CKD induced by 5/6 nephrectomy (5/6 Nx). Rats were given Zn and the incremental area under the plasma Zn concentration-time curve (iAUC) was measured as well as the expression of ZIP4, an intestinal Zn transporter. We found that 5/6 Nx rats showed lower iAUC than sham-operated rats, but expression of ZIP4 protein was upregulated. We therefore focused on other Zn absorption regulators to explore the mechanism by which Zn absorption was substantially decreased. Because some phosphate compounds inhibit Zn absorption by coprecipitation and hyperphosphatemia is a common symptom in advanced CKD, we measured inorganic phosphate (Pi) levels. Pi was elevated in not only serum but also the intestinal lumen of 5/6 Nx rats. Furthermore, intestinal intraluminal Pi administration decreased the iAUC in a dose-dependent manner in normal rats. In vitro, increased Pi concentration decreased Zn solubility under physiological conditions. Furthermore, dietary Pi restriction ameliorated hypozincemia in 5/6 Nx rats. We conclude that hyperphosphatemia or excess Pi intake is a factor in Zn malabsorption and hypozincemia in CKD. Appropriate management of hyperphosphatemia will be useful for prevention and treatment of hypozincemia in patients with CKD.NEW & NOTEWORTHY We demonstrated that elevated intestinal luminal Pi concentration can suppress intestinal Zn absorption activity without decreasing the expression of the associated Zn transporter. Increased intestinal luminal Pi led to the formation of an insoluble complex with Zn while dietary Pi restriction or administration of a Pi binder ameliorated hypozincemia in chronic kidney disease model rats. Therefore, modulation of dietary Pi by Pi restriction or a Pi binder might be useful for the treatment of hypozincemia and hyperphosphatemia.
Assuntos
Hiperfosfatemia , Insuficiência Renal Crônica , Humanos , Ratos , Animais , Fosfatos/metabolismo , Hiperfosfatemia/tratamento farmacológico , Zinco , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Nefrectomia/efeitos adversos , Absorção IntestinalRESUMO
The endosomal-lysosomal system represents a crucial degradation pathway for various extracellular substances, and its dysfunction is linked to cardiovascular and neurodegenerative diseases. This degradation process involves multiple steps: (1) the uptake of extracellular molecules, (2) transport of cargos to lysosomes, and (3) digestion by lysosomal enzymes. While cellular uptake and lysosomal function are reportedly regulated by the mTORC1-TFEB axis, the key regulatory signal for cargo transport remains unclear. Notably, our previous study discovered that isorhamnetin, a dietary flavonoid, enhances endosomal-lysosomal proteolysis in the J774.1 cell line independently of the mTORC1-TFEB axis. This finding suggests the involvement of another signal in the mechanism of isorhamnetin. This study analyzes the molecular mechanism of isorhamnetin using transcriptome analysis and reveals that the transcription factor GATA3 plays a critical role in enhanced endosomal-lysosomal degradation. Our data also demonstrate that mTORC2 regulates GATA3 nuclear translocation, and the mTORC2-GATA3 axis alters endosomal formation and maturation, facilitating the efficient transport of cargos to lysosomes. This study suggests that the mTORC2-GATA3 axis might be a novel target for the degradation of abnormal substances.
RESUMO
Disorder of phosphate metabolism is a common pathological condition in chronic kidney disease patients. Excessive intake of dietary phosphate deteriorates chronic kidney disease and various complications including cardiovascular and infectious diseases. Recent reports have demonstrated that gut microbiome disturbance is associated with both the etiology and progression of chronic kidney disease. However, the relationship between dietary phosphate and gut microbiome remains unknown. Here, we examined the effects of excessive intake of phosphate on gut microbiome. Five-week-old male C57BL/6J mice were fed either control diet or high phosphate diet for eight weeks. Analysis of the gut microbiota was carried out using MiSeq next generation sequencer, and short-chain fatty acids were determined with GC-MS. In analysis of gut microbiota, significantly increased in Erysipelotrichaceae and decreased in Ruminococcaceae were observed in high phosphate diet group. Furthermore, high phosphate diet induced reduction of microbial diversity and decreased mRNA levels of colonic tight junction markers. These results suggest that the excessive intake of dietary phosphate disturbs gut microbiota and affects intestinal barrier function.
RESUMO
Hyperphosphatemia is an independent and non-classical risk factor of cardiovascular disease and mortality in patients with chronic kidney disease (CKD). Increased levels of extracellular inorganic phosphate (Pi) are known to directly induce vascular calcification, but the detailed underlying mechanism has not been clarified. Although serum Pi levels during the growth period are as high as those observed in hyperphosphatemia in adult CKD, vascular calcification does not usually occur during growth. Here, we have examined whether the defence system against Pi-induced vascular calcification can exist during the growth period using mice model. We found that calcification propensity of young serum (aged 3 weeks) was significantly lower than that of adult serum (10 months), possibly due to high fetuin-A levels. In addition, when the aorta was cultured in high Pi medium in vitro, obvious calcification was observed in the adult aorta but not in the young aorta. Furthermore, culture in high Pi medium increased the mRNA level of tissue-nonspecific alkaline phosphatase (TNAP), which degrades pyrophosphate, only in the adult aorta. Collectively, our findings indicate that the aorta in growing mouse may be resistant to Pi-induced vascular calcification via a mechanism in which high serum fetuin-A levels and suppressed TNAP expression.
RESUMO
Vascular calcification is an important pathogenesis related to cardiovascular disease and high mortality rate in chronic kidney disease (CKD) patients. It has been well-known that hyper-phosphatemia induces osteochondrogenic transition of vascular smooth muscle cells (VSMCs) resulting ectopic calcification in aortic media, cardiac valve, and kidney. However, the detailed mechanism of the ectopic calcification has been not clarified yet. Here, we found that the co-localization of CYP27B1 with the calcified lesions of aorta and arteries in kidney of klotho mutant (kl/kl) mice, and then investigated the role of CYP27B1 in the mineralization of the VSMCs. Under high phosphate condition, overexpression of CYP27B1 induced calcification and osteocalcin mRNA expression in the VSMCs. Inversely, siRNA-CYP27B1 inhibited high phosphate-induced calcification of the VSMCs. We also found that the accumulated CYP27B1 protein was glycosylated in the kidney of kl/kl mice. Therefore, overexpression of CYP27B1-N310A and CYP27B1-T439A, which are a mutation for N-linked glycosylation site (N310A) and a mutation for O-linked glycosylation site (T439A) in CYP27B1, decreased calcium deposition and expression of RUNX2 induced by high phosphate medium in VSMCs compared with wild-type CYP27B1. These results suggest that extra-renal expression of glycosylated CYP27B1 would be required for ectopic calcification of VSMCs under hyperphosphatemia.
RESUMO
Inorganic phosphate (Pi) homeostasis is regulated by intestinal absorption via type II sodium-dependent co-transporter (Npt2b) and by renal reabsorption via Npt2a and Npt2c. Although we previously reported that vitamin A-deficient (VAD) rats had increased urine Pi excretion through the decreased renal expression of Npt2a and Npt2c, the effect of vitamin A on the intestinal Npt2b expression remains unclear. In this study, we investigated the effects of treatment with all-trans retinoic acid (ATRA), a metabolite of vitamin A, on the Pi absorption and the Npt2b expression in the intestine of VAD rats, as well as and the underlying molecular mechanisms. In VAD rats, the intestinal Pi uptake activity and the expression of Npt2b were increased, but were reduced by the administration of ATRA. The transcriptional activity of reporter plasmid containing the promoter region of the rat Npt2b gene was reduced by ATRA in NIH3T3 cells overexpressing retinoic acid receptor (RAR) and retinoid X receptor (RXR). On the other hand, CCAAT/enhancer-binding proteins (C/EBP) induced transcriptional activity of the Npt2b gene. Knockdown of the C/EBP gene and a mutation analysis of the C/EBP responsible element in the Npt2b gene promoter indicated that C/EBP plays a pivotal role in the regulation of Npt2b gene transcriptional activity by ATRA. EMSA revealed that the RAR/RXR complex inhibits binding of C/EBP to Npt2b gene promoter. Together, these results suggest that ATRA may reduce the intestinal Pi uptake by preventing C/EBP activation of the intestinal Npt2b gene.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Intestino Delgado/metabolismo , Rim/metabolismo , Regiões Promotoras Genéticas , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Antineoplásicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Hipofosfatemia Familiar/metabolismo , Hipofosfatemia Familiar/patologia , Hipofosfatemia Familiar/prevenção & controle , Intestino Delgado/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Camundongos , Células NIH 3T3 , Ratos , Ratos Wistar , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/metabolismoRESUMO
Lysosome is the principal organelle for the ultimate degradation of cellular macromolecules, which are delivered through endocytosis, phagocytosis, and autophagy. The lysosomal functions have been found to be impaired by fatty foods and aging, and more importantly, the lysosomal dysfunction in macrophages has been reported as a risk of atherosclerosis development. In this study, we searched for dietary polyphenols which possess the activity for enhancing the lysosomal degradation in J774.1, a murine macrophage-like cell line. Screening test utilizing DQ-BSA digestion identified isorhamnetin (3'-O-methylquercetin) as an active compound. Interestingly, structural comparison to inactive flavonols revealed that the chemical structure of the B-ring moiety in isorhamnetin is the primary determinant of its lysosome-enhancing activity. Unexpectedly isorhamnetin failed to inhibit mTORC1-TFEB signaling, a master regulator of lysosomal biogenesis and function. Our data suggested that the other molecular mechanism might be critical for the regulation of lysosomes in macrophages.Abbreviations: ANOVA: analysis of variance; ApoE: apolipoprotein E; ATP6V0D2: ATPase H+ transporting V0 subunit d2; BAF: bafilomycin A1; BODIPY: boron dipyrromethene; BSA: bovine serum albumin; CTSD: cathepsin D; CTSF: cathepsin F; DMEM: Dulbecco's modified eagle medium; DMSO: dimethyl sulfoxide; EGCG: epigallocatechin-3-gallate; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HPLC: high-performance liquid chromatography; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LC-MS/MS: liquid chromatography tandem mass spectrometry; MITF: microphthalmia-associated transcription factor; MRM: multiple reaction monitoring; mTORC1: mechanistic target of rapamycin complex 1; PBS: phosphate-buffered saline; PPARγ: peroxisome proliferator-activated receptor γ; RT-qPCR: reverse transcription quantitative polymerase chain reaction; SDS: sodium dodecyl sulfate; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment protein receptor; TBS: Tris-buffered saline; TFA: trifluoroacetic acid; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcriptional factor EB; TFEC: transcription factor EC; V-ATPase: vacuolar-type proton ATPase.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Proteólise/efeitos dos fármacos , Quercetina/análogos & derivados , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Cromatografia Líquida de Alta Pressão , Dissacarídeos/química , Dissacarídeos/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Plasmídeos/genética , Quercetina/química , Quercetina/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espectrometria de Massas em Tandem , TransfecçãoRESUMO
Decreases in plasma vitamin D concentrations have been reported in diabetes, although the mechanism involved in this decrease is unclear. Here, we investigated the association between Cyp24a1, a vitamin D catabolic enzyme, and abnormalities in vitamin D metabolism in streptozotocin-induced diabetes rats, an animal model of type 1 diabetes. Plasma 1,25-dihydroxyvitamin D [1,25(OH)2D] levels were significantly lower in streptozotocin-induced diabetes rats and renal Cyp24a1 mRNA expression levels were increased. Western blotting analysis of streptozotocin-induced diabetes rats kidney tissues with anti-CYP24A1 antibody showed a strong signal around 40 kDa, which differs from the predicted 50-55 kDa molecular weight for full-length Cyp24a1 and could represent the Cyp24a1-splicing variant that lacks exons 1 and 2. We observed high levels of renal Cyp24a1-splicing variant mRNA expression in streptozotocin-induced diabetes rats. We also confirmed transcriptional up-regulation of endogenous Cyp24a1 mRNA expression through glucocorticoid receptors by glucocorticoid in opossum kidney proximal cells. Taken together, our results indicated that high Cyp24a1 expression levels may play a role in the decrease of plasma 1,25(OH)2D levels in streptozotocin-induced diabetes rats. High plasma corticosterone levels in diabetes may affect transcriptional regulation to promote increases in Cyp24a1 expression.
RESUMO
Skeletal muscle atrophy is associated with mortality and poor prognosis in patients with chronic kidney disease (CKD). However, underlying mechanism by which CKD causes muscle atrophy has not been completely understood. The quality of lipids (lipoquality), which is defined as the functional features of diverse lipid species, has recently been recognized as the pathology of various diseases. In this study, we investigated the roles of the stearoyl-CoA desaturase (SCD), which catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, in skeletal muscle on muscle atrophy in CKD model animals. In comparison to control rats, CKD rats decreased the SCD activity and its gene expression in atrophic gastrocnemius muscle. Next, oleic acid blocked the reduction of the thickness of C2C12 myotubes and the increase of the endoplasmic reticulum stress induced by SCD inhibitor. Furthermore, endoplasmic reticulum stress inhibitor ameliorated CKD-induced muscle atrophy (the weakness of grip strength and the decrease of muscle fiber size of gastrocnemius muscle) in mice and the reduction of the thickness of C2C12 myotubes by SCD inhibitor. These results suggest that the repression of SCD activity causes muscle atrophy through excessive endoplasmic reticulum stress in CKD.
RESUMO
Recent epidemiological and animal studies have suggested that excess intake of phosphate (Pi) is a risk factor for the progression of chronic kidney disease and its cardiovascular complications. However, little is known about the impact of dietary high Pi intake on the development of metabolic disorders such as obesity and type 2 diabetes. In this study, we investigated the effects of dietary Pi on glucose and lipid metabolism in healthy rats. Male 8-wk-old Sprague-Dawley rats were divided into three groups and given experimental diets containing varying amounts of Pi, i.e., 0.2 [low Pi(LP)], 0.6 [control Pi(CP)], and 1.2% [high Pi(HP)]. After 4 wk, the HP group showed lower visceral fat accumulation compared with other groups, accompanied by a low respiratory exchange ratio (VÌCO2/VÌO2) without alteration of locomotive activity. The HP group had lower levels of plasma insulin and nonesterified fatty acids. In addition, the HP group also showed suppressed expression of hepatic lipogenic genes, including sterol regulatory element-binding protein-1c, fatty acid synthase, and acetyl-CoA carboxylase, whereas there was no difference in hepatic fat oxidation among the groups. On the other hand, uncoupling protein (UCP) 1 and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression were significantly increased in the brown adipose tissue (BAT) of the HP group. Our data demonstrated that a high-Pi diet can negatively regulate lipid synthesis in the liver and increase mRNA expression related to lipid oxidation and UCP1 in BAT, thereby preventing visceral fat accumulation. Thus, dietary Pi is a novel metabolic regulator.
Assuntos
Comportamento Animal/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Gordura Intra-Abdominal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Fosfatos/farmacologia , Compostos de Potássio/farmacologia , Troca Gasosa Pulmonar/efeitos dos fármacos , Acetil-CoA Carboxilase/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Glicemia/metabolismo , Ácido Graxo Sintase Tipo I/efeitos dos fármacos , Ácido Graxo Sintase Tipo I/genética , Ácidos Graxos não Esterificados/sangue , Insulina/sangue , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/genética , Lipogênese/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Proteína Desacopladora 1RESUMO
High serum phosphorus (P) impairs endothelial function by increasing oxidative stress and decreasing nitric oxide production. Serum P levels fluctuate due to circadian rhythms or dietary P intake in healthy people and due to dialysis in end-stage chronic kidney disease patients. Here we examined whether fluctuating plasma P caused by changes in dietary P intake may be involved in endothelial dysfunction, resulting in increased cardiovascular risk. Rats were fed a diet containing 0.6% P for 16 days (control group), or a diet alternating between 0.02% P and 1.2% P (LH group) or between 1.2% P and 0.02% P (HL group) every 2 days; the total amount of P intake among the groups during the feeding period was similar. In the LH and HL groups, endothelial-dependent vasodilation significantly decreased plasma 8-(OH)dG level significantly increased, and the expression of inflammatory factors such as MCP-1 increased in the endothelium as compared with the control group. These data indicate that repetitive fluctuations of plasma P caused by varying dietary P intake can impair endothelial function via increased oxidative stress and inflammatory response. Taken together, these results suggest that habitual fluctuation of dietary P intake might be a cause of cardiovascular disease through endothelial dysfunction, especially in chronic kidney disease patients.
RESUMO
A dietary combination of sucrose and linoleic acid strongly contributes to the development of metabolic disorders in Zucker fatty rats. However, the underlying mechanisms of the metabolic disorders are poorly understood. We hypothesized that the metabolic disorders were triggered at a stage earlier than the 8 weeks we had previously reported. In this study, we investigated early molecular events induced by the sucrose and linoleic acid diet in Zucker fatty rats by comparison with other combinations of carbohydrate (sucrose or palatinose) and fat (linoleic acid or oleic acid). Skeletal muscle arachidonic acid levels were significantly increased in the sucrose and linoleic acid group compared to the other dietary groups at 4 weeks, while there were no obvious differences in the metabolic phenotype between the groups. Expression of genes related to arachidonic acid synthesis was induced in skeletal muscle but not in liver and adipose tissue in sucrose and linoleic acid group rats. In addition, the sucrose and linoleic acid group exhibited a rapid induction in endoplasmic reticulum stress and abnormal lipid metabolism in skeletal muscle. We concluded that the dietary combination of sucrose and linoleic acid primarily induces metabolic disorders in skeletal muscle through increases in arachidonic acid and endoplasmic reticulum stress, in advance of systemic metabolic disorders.
RESUMO
Dietary Reference Intakes for Japanese provide target values for proteins, fats, and carbohydrates. However, they do not provide information on reference values for amino acids (AAs) and fatty acids (FAs), which determine the quality of foods in detail. Therefore, we evaluated AAs and FAs using the Food Exchange Lists-Dietary Guidance for Persons with Diabetes (in Japanese) Utilization, Second Edition Sample Menus and Practice (FELD) as an ideal Japanese diet. Based on FELD, 15 different daily meal patterns were employed with combinations of three levels of carbohydrates %energy (high carbohydrate [HC], 60%; middle carbohydrate [MC], 55%; and low carbohydrate [LC], 50%) and five levels of energy (1,200-2,000 kcal). Using the Japanese Food Composition Table 2020 adjusted for 1,000 kcal, 18 AAs, 49 FAs, and calorie densities (CDs, kcal/g) were calculated and compared among the three groups. Dietary AA was rich in glutamic acid, aspartic acid, and leucine; in order, no significant differences were observed among HC, MC, and LC for 18 AAs. Dietary FA was higher for 18:1 total, 16:0, and 18:2 n-6. Moreover, 16:0, 20:0, and 18:1 total in LC and 22:0 and 18:3 n-3 in MC were significantly higher than those in HC. The HC, MC, and LC CD was low at 0.82, 0.84, and 0.93 kcal/g, respectively. No significant differences in 18 AAs and CD were noted among HC, MC, and LC in FELD; however, significant differences were observed in the FA profiles. This study suggests the importance of evaluating diet using AA and FA units.
Assuntos
Diabetes Mellitus , Ácidos Graxos , Aminoácidos , Japão , Carboidratos da Dieta , Dieta , Gorduras na DietaRESUMO
Lipophagy is defined as a lipolysis pathway that degrades lipid droplet (LD) via autophagy. All-trans retinoic acid (atRA), a metabolite of vitamin A, stimulates lipolysis through hormone-sensitive lipase and ß-oxidation. However, the regulation of lipolysis by atRA-induced autophagy in adipocytes remains unclear. In this study, we investigated the effect of atRA on autophagy in epididymal fat of mice and the molecular mechanisms of autophagy in 3T3-L1 adipocytes. Western blotting showed that atRA decreased the expression of p62, a cargo receptor for autophagic degradation, and increased the expression of the lipidated LC3B (LC3B-II), an autophagy marker, in epididymal fat. Next, we confirmed that atRA increased autophagic flux in differentiated 3T3-L1 cells using the GFP-LC3-RFP-LC3ΔG probe. Immunofluorescent staining revealed that the colocalization of LC3B with perilipin increased in differentiated 3T3-L1 cells treated with atRA. The knockdown of Atg5, an essential gene in autophagy induction, partly suppressed the atRA-induced release of non-esterified fatty acid (NEFA) from LDs in differentiated 3T3-L1 cells. atRA time-dependently elicited the phosphorylation of AMPK and Beclin1, autophagy-inducing factors, in mature 3T3-L1 adipocytes. Inversely, atRA decreased the protein expression of Rubicon, an autophagy repressor, in differentiated 3T3-L1 cells and epididymal fat. Interestingly, the expression of ALDH1A1, atRA-synthesizing enzymes, increased in epididymal fat with decreased protein expression of Rubicon in aged mice. These results suggest that atRA may partially induce lipolysis through lipophagy by activating the AMPK-Beclin1 signaling pathway in the adipocytes and increased atRA levels may contribute to decreased Rubicon expression in the epididymal fat of aged mice. (248/250 words).
Assuntos
Proteínas Quinases Ativadas por AMP , Transdução de Sinais , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Lipólise , Tretinoína/farmacologia , Tretinoína/metabolismo , Autofagia , Adipócitos , Células 3T3-L1RESUMO
Adverse early nutrition leads to metabolic aberrations in adulthood. Molecular and cellular mechanisms responsible are emerging; specific nutritional causes remain unclarified. We investigated gestational dietary intake and its influences on metabolism in offspring. Three groups of pregnant Sprague-Dawley rats were fed either AIN93G standard diet as control, isocaloric high fat sucrose diet or calorie restriction diet (50% of control) until delivery. All dams were fed control diet ad libitum during lactation. Offsprings' metabolic parameters were assessed at three weeks. Visceral fat and plasma triglycerides of high fat sucrose diet offspring were significantly higher than those of control diet and calorie restriction diet offspring. Plasma leptin level was higher in high fat sucrose diet than control offspring. Conversely, plasma adiponectin was lower in high fat sucrose diet and calorie restriction diet offspring compared to controls. Significant inductions of hepatic mRNA expression of stearoyl-CoA desaturase1 and Δ-5 desaturase genes, were observed in high fat sucrose diet and calorie restriction diet offspring. Gestational high sugar and fat intake even without over energy intake would be more detrimental to metabolisms of offspring compared to calorie restriction.
RESUMO
Chronic exposure to high glucose and fatty acid levels caused by dietary sugar and fat intake induces ß cell apoptosis, leading to the exacerbation of type 2 diabetes. Oleic acid and linoleic acid are two major dietary fatty acids, but their effects in diabetes are unclear. We challenged ß cell-specific glucokinase haploinsufficient (Gck(+/-)) mice with a diet containing sucrose and oleic acid (SO) or sucrose and linoleic acid (SL) and analyzed ß cell apoptosis. In Gck(+/-) but not wild-type mice, SL significantly decreased the ß cell mass and ß cell proportion in islet cells arising from increased apoptosis to a greater degree than did SO. The mRNA expression of SREBP-1c was significantly higher, and that of E-cadherin was significantly lower in the islets of Gck(+/-) mice fed SL compared with mice fed SO. We next evaluated monotherapy with desfluorositagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, in these mouse groups. DPP-4 inhibitor protected against ß cell apoptosis, restored the ß cell mass, and normalized islet morphology in Gck(+/-) mice fed SL. DPP-4 inhibition normalized the changes in the islet expression of SREBP-1c and E-cadherin mRNA induced by the SL diet. Furthermore, linoleic acid induced ß cell apoptosis to a greater degree in the presence of high glucose levels than in the presence of low glucose levels in vitro in islets and MIN6 cells, whereas a GLP-1 receptor agonist prevented apoptosis. In conclusion, SL exacerbated ß cell apoptosis in diabetic Gck(+/-) mice but not in euglycemic wild-type mice, and DPP-4 inhibition protected against these effects.
Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus/patologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Células Secretoras de Insulina/patologia , Ácido Linoleico/efeitos adversos , Sacarose/efeitos adversos , Administração Oral , Animais , Ácido Araquidônico/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Carboidratos da Dieta/efeitos adversos , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/química , Relação Dose-Resposta a Droga , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucoquinase/genética , Glucose/metabolismo , Haploinsuficiência , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Pirazinas/administração & dosagem , Pirazinas/química , Pirazinas/farmacologia , Receptores de Glucagon/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfato de Sitagliptina , Triazóis/administração & dosagem , Triazóis/química , Triazóis/farmacologiaRESUMO
Lipophagy, a form of selective autophagy, degrades lipid droplet (LD) in adipose tissue and the liver. The chemotherapeutic isothiocyanate sulforaphane (SFN) contributes to lipolysis through the activation of hormone-sensitive lipase and the browning of white adipocytes. However, the details concerning the regulation of lipolysis in adipocytes by SFN-mediated autophagy remain unclear. In this study, we investigated the effects of SFN on autophagy in the epididymal fat of mice fed a high-fat diet (HFD) or control-fat diet and on the molecular mechanisms of autophagy in differentiated 3T3-L1 cells. Western blotting revealed that the protein expression of lipidated LC3 (LC3-II), an autophagic substrate, was induced after 3T3-L1 adipocytes treatment with SFN. In addition, SFN increased the LC3-II protein expression in the epididymal fat of mice fed an HFD. Immunofluorescence showed that the SFN-induced LC3 expression was co-localized with LDs in 3T3-L1 adipocytes and with perilipin, the most abundant adipocyte-specific protein, in adipocytes of mice fed an HFD. Next, we confirmed that SFN activates autophagy flux in differentiated 3T3-L1 cells using the mCherry-EGFP-LC3 and GFP-LC3-RFP-LC3ΔG probe. Furthermore, we examined the induction mechanisms of autophagy by SFN in 3T3-L1 adipocytes using western blotting. ATG5 knockdown partially blocked the SFN-induced release of fatty acids from LDs in mature 3T3-L1 adipocytes. SFN time-dependently elicited the phosphorylation of AMPK, the dephosphorylation of mTOR, and the phosphorylation of ULK1 in differentiated 3T3-L1 cells. Taken together, these results suggest that SFN may provoke lipophagy through AMPK-mTOR-ULK1 pathway signaling, resulting in partial lipolysis of adipocytes.
Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Isotiocianatos , Serina-Treonina Quinases TOR , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Isotiocianatos/farmacologia , Lipólise/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos/farmacologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
All-trans retinoic acid (ATRA) increases the sensitivity to unfolded protein response in differentiating leukemic blasts. The downstream transcriptional factor of PERK, a major arm of unfolded protein response, regulates muscle differentiation. However, the role of growth arrest and DNA damage-inducible protein 34 (GADD34), one of the downstream factors of PERK, and the effects of ATRA on GADD34 expression in muscle remain unclear. In this study, we identified ATRA increased the GADD34 expression independent of the PERK signal in the gastrocnemius muscle of mice. ATRA up-regulated GADD34 expression through the transcriptional activation of GADD34 gene via inhibiting the interaction of homeobox Six1 and transcription co-repressor TLE3 with the MEF3-binding site on the GADD34 gene promoter in skeletal muscle. ATRA also inhibited the interaction of TTP, which induces mRNA degradation, with AU-rich element on GADD34 mRNA via p-38 MAPK, resulting in the instability of GADD34 mRNA. Overexpressed GADD34 in C2C12 cells changes the type of myosin heavy chain in myotubes. These results suggest ATRA increases GADD34 expression via transcriptional and post-transcriptional regulation, which changes muscle fiber type.
Assuntos
Fibras Musculares Esqueléticas , Proteína Fosfatase 1 , Tretinoína , Animais , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Proteína Fosfatase 1/metabolismo , RNA Mensageiro , Fatores de Transcrição/genética , Tretinoína/metabolismo , Tretinoína/farmacologiaRESUMO
Autophagy is a major degradation system for intracellular macromolecules. Its decline with age or obesity is related to the onset and development of various intractable diseases. Although dietary phytochemicals are expected to enhance autophagy for preventive medicine, few studies have addressed their effects on the autophagy flux, which is the focus of the current study. Herein, 67 dietary phytochemicals were screened using a green fluorescent protein (GFP)-microtubule-associated protein light chain 3 (LC3)-red fluorescent protein (RFP)-LC3ΔG probe for the quantitative assessment of autophagic degradation. Among them, isorhamnetin, chrysoeriol, 2,2',4'-trihydroxychalcone, and zerumbone enhanced the autophagy flux in HeLa cells. Meanwhile, analysis of the structure-activity relationships indicated that the 3'-methoxy-4'-hydroxy group on the B-ring in the flavone skeleton and an ortho-phenolic group on the chalcone B-ring were crucial for phytochemicals activities. These active compounds were also effective in colon carcinoma Caco-2 cells, and some of them increased the expression of p62 protein, a typical substrate of autophagic proteolysis, indicating that phytochemicals impact p62 levels in autophagy-dependent and/or -independent manners. In addition, these compounds were characterized by distinct modes of action. While isorhamnetin and chrysoeriol enhanced autophagy in an mTOR signaling-dependent manner, the actions of 2,2',4'-trihydroxychalcone and zerumbone were independent of mTOR signaling. Hence, these dietary phytochemicals may prove effective as potential preventive or therapeutic strategies for lifestyle-related diseases.