Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Exp Mol Pathol ; 137: 104911, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38861838

RESUMO

BACKGROUND: Recently, consensus molecular subtypes (CMSs) have been proposed as a robust transcriptome-based classification system for colorectal cancer (CRC). Tetraspanins (TSPANs) are transmembrane proteins. They have been associated with the development of numerous malignancies, including CRC, through their role as "master organizers" for multi-molecular membrane complexes. No previous study has investigated the correlation between TSPANs and CMS classification. Herein, we investigated the expression of TSPANs in patient-derived primary CRC tissues and their CMS classifications. METHODS: RNA samples were derived from primary CRC tissues (n = 100 patients diagnosed with colorectal adenocarcinoma) and subjected to RNA sequencing for transcriptome-based CMS classification and TSPAN-relevant analyses. Immunohistochemistry (IHC) and immunofluorescence (IF) stains were conducted to observe the protein expression level. To evaluate the relative biological pathways, gene-set enrichment analysis was performed. RESULTS: Of the highly expressed TSPAN genes in CRC tissues (TSPAN8, TSPAN29, and TSPAN30), TSPAN8 was notably overexpressed in CMS3-classified primary tissues. The overexpression of TSPAN8 protein in CMS3 CRC was also observed by IHC and IF staining. As a result of gene-set enrichment analysis, TSPAN8 may potentially play a role in organizing signaling complexes for kinase-based metabolic deregulation in CMS3 CRC. CONCLUSIONS: The present study reports the overexpression of TSPAN8 in CMS3 CRC. This study proposes TSPAN8 as a subtype-specific biomarker for CMS3 CRC. This finding provides a foundation for future CMS-based studies of CRC, a complex disease and the second leading cause of cancer mortality worldwide.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Tetraspaninas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/classificação , Tetraspaninas/genética , Tetraspaninas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/classificação , Transcriptoma/genética , Imuno-Histoquímica
2.
Anal Chem ; 95(9): 4556-4563, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802525

RESUMO

An olfactory receptor mimetic peptide-modified graphene field-effect transistor (gFET) is a promising solution to overcome the principal challenge of low specificity graphene-based sensors for volatile organic compound (VOC) sensing. Herein, peptides mimicking a fruit fly olfactory receptor, OR19a, were designed by a high-throughput analysis method that combines a peptide array and gas chromatography for the sensitive and selective gFET detection of the signature citrus VOC, limonene. The peptide probe was bifunctionalized via linkage of a graphene-binding peptide to facilitate one-step self-assembly on the sensor surface. The limonene-specific peptide probe successfully achieved highly sensitive and selective detection of limonene by gFET, with a detection range of 8-1000 pM, while achieving facile sensor functionalization. Taken together, our target-specific peptide selection and functionalization strategy of a gFET sensor demonstrates advancement of a precise VOC detection system.


Assuntos
Técnicas Biossensoriais , Grafite , Receptores Odorantes , Compostos Orgânicos Voláteis , Técnicas Biossensoriais/métodos , Grafite/química , Limoneno , Peptídeos , Transistores Eletrônicos , Compostos Orgânicos Voláteis/análise , Drosophila , Animais
3.
Anal Chem ; 92(24): 16197-16203, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33236623

RESUMO

Membrane curvature-sensing (MCS) proteins recognize and regulate the morphologies of biological membranes. As these proteins lack characteristic sequence motifs in their primary structure, they are not instantly recognizable by genomic databases. Overcoming this technological challenge toward the agile identification of new proteins can promote the elucidation of membrane morphological regulation. Here, for the selective identification of MCS proteins, comparative proteomic analysis was performed using different sizes of the spherical supported lipid bilayer (SSLB), which consists of spherical SiO2 particles covered with a lipid bilayer. Because of the presence of SiO2 core, the curvature of the surrounding membrane is well-controlled and stable even on a micron scale. To prove this concept, known membrane curvature-sensing protein domains, Bin/Amphiphysin/Rvs (BAR) and Epsin N-terminal homology (ENTH), were evaluated by performing a binding assay using SSLBs, and the preferential binding to the highly curved membrane was confirmed. Peripheral membrane proteins obtained from normal human dermal fibroblast (NHDF) and human breast cancer (MDA-MB-231) cells were used in shotgun proteomic analysis, and 786 and 949 proteins were identified from SSLBs as lipid membrane binders, respectively. Statistical quantitative analyses of proteins detected from each SSLB with a different size revealed 118 candidate proteins, including 23 proteins unique to MDA-MB-231 cells, as membrane curvature sensors, including some previously reported curvature sensors. Functional clustering analysis based on the KEGG orthology database revealed that the protein-binding property to specific high or low membrane curvature correlated with their functions. Further investigation of candidate proteins will lead to the identification of new MCS proteins as well as cancer biomarkers.


Assuntos
Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Proteômica , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Humanos , Bicamadas Lipídicas/química , Silibina/química
4.
Bioconjug Chem ; 31(5): 1400-1407, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32281783

RESUMO

Explosive compounds, such as 2,4,6-trinitrotoluene (TNT), pose a great concern in terms of both global public security and environmental protection. There are estimated to be hundreds of TNT contaminated sites all over the world, which will affect the health of humans, wildlife, and the ecosystem. Clearly, the ability to detect TNT in soils, water supplies, and wastewater is important for environmental studies but also important for security, such as in ports and boarders. However, conventional spectroscopic detection is not practical for on-site sensing because it requires sophisticated equipment and trained personnel. We report a rapid and simple chemical sensor for TNT by using TNT binding peptides which are conjugated to fluorescent CdTe/CdS quantum dots (QDs). QDs were synthesized in the aqueous phase, and the peptide was attached directly to the surface of the QDs by using thiol groups. The fluorescent emission from the QDs was quenched in response to the addition of TNT. The response could even be observed by the naked eye. The limit of detection from fluorescence spectroscopic measurement was estimated to be approximately 375 nM. In addition to the rapid response (within a few seconds), selective detection was demonstrated. We believe this label-free chemical sensor contributes to progress for the on-site explosive sensing.


Assuntos
Técnicas de Química Analítica/instrumentação , Poluentes Ambientais/análise , Peptídeos/química , Pontos Quânticos/química , Trinitrotolueno/análise , Compostos de Cádmio/química , Poluentes Ambientais/química , Corantes Fluorescentes/química , Sulfetos/química , Telúrio/química , Fatores de Tempo , Trinitrotolueno/química
5.
Bioconjug Chem ; 31(8): 1981-1994, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32657572

RESUMO

Using protein and peptide additives to direct the crystallization of inorganic materials is a very attractive and environmentally friendly strategy to access complex and sometimes inaccessible mineral phases. CoPt is a very desirable high-magnetoanisotropic material in its L10 phase, but this is acquired by annealing at high temperatures which is incompatible with delicate nanomaterial assembly. Previous studies identified one peptide with high affinity to CoPt and four peptides with high affinity to FePt L10 phase nanoparticles (NPs) through phage display biopanning selection. While synthesis mediated by these peptides offered a small degree of L10 character to the NPs, they do not have the magnetoanistropy required for applications. In this study, we improve the activity of peptide directed crystallization by designing second generation peptides. We use the five literature sequences (LS) to probe the binding affinity deeper through dissection (alanine scanning), reduction (truncations), and substitution of the LS to find key amino acids and motifs. This is performed using a SPOT peptide array, importantly probing interactions at three stages of NP formation: with precursor, during synthesis, and with NPs. We found four universal features: 1) the importance of basic residues, particularly lysine flanking both ends of the sequence; 2) the importance of methionine; 3) shorter sequences show higher affinity than longer ones; and 4) acidic residues have a negative impact on binding with aspartic acid less favorable than glutamic acid. However, an acidic amino acid benefits, presumably to balance charge. The short motif KSLS had high affinity in all assays. Three sequences were selected from the screening, and three sequences were designed from the rules above. These were used to mediate a green synthesis of CoPt nanoparticles. The screened peptides mediated the formation of NPs with improved coercivity (90-110 Oe) compared to the LS (30-80 Oe), while the designed peptides facilitated formation of CoPt NPs with the highest coercivity (109 to 132 Oe), representing a massive improvement on L10 character. This result along with deeper insight this methodology brings offers vast potential for the future.


Assuntos
Ligas/química , Nanopartículas Metálicas/química , Peptídeos/química , Sequência de Aminoácidos , Ligação Proteica
6.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235567

RESUMO

The use of biomolecules in nanomaterial synthesis has received increasing attention, because they can function as a medium to produce inorganic materials in ambient conditions. Short peptides are putative ligands that interact with metallic surfaces, as they have the potential to control the synthesis of nanoscale materials. Silver nanoparticle (AgNP) mineralization using peptides has been investigated; however, further comprehensive analysis must be carried out, because the design of peptide mediated-AgNP properties is still highly challenging. Herein, we employed an array comprising 200 spot synthesis-based peptides, which were previously isolated as gold nanoparticle (AuNP)-binding and/or mineralization peptides, and the AgNP mineralization activity of each peptide was broadly evaluated. Among 10 peptides showing the highest AgNP-synthesis activity (TOP10), nine showed the presence of EE and E[X]E (E: glutamic acid, and X: any amino acid), whereas none of these motifs were found in the WORST25 (25 peptides showing the lowest AgNP synthesis activity) peptides. The size and morphology of the particles synthesized by TOP3 peptides were dependent on their sequences. These results suggested not only that array-based techniques are effective for the peptide screening of AgNP mineralization, but also that AgNP mineralization regulated by peptides has the potential for the synthesis of AgNPs, with controlled morphology in environmentally friendly conditions.


Assuntos
Nanopartículas Metálicas/química , Nanoestruturas/química , Peptídeos/química , Prata/química , Sequência de Aminoácidos , Sítios de Ligação , Química Verde , Nanotecnologia , Análise Serial de Proteínas
7.
J Am Chem Soc ; 140(48): 16834-16841, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30475615

RESUMO

Immunosensing is a bioanalytical technique capable of selective detections of pathogens by utilizing highly specific and strong intermolecular interactions between recognition probes and antigens. Here, we exploited the molecular mechanism in artificial nanopores for selective single-virus identifications. We designed hemagglutinin antibody mimicking oligopeptides with a weak affinity to influenza A virus. By functionalizing the pore wall surface with the synthetic peptides, we rendered specificity to virion-nanopore interactions. The ligand binding thereof was found to perturb translocation dynamics of specific viruses in the nanochannel, which facilitated digital typing of influenza by the resistive pulse bluntness. As amino acid sequence degrees of freedom can potentially offer variety of recognition ability to the molecular probes, this peptide nanopore approach can be used as a versatile immunosensor with single-particle sensitivity that promises wide applications in bioanalysis including bacterial and viral screening to infectious disease diagnosis.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Nanoporos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Galinhas , Ouro/química , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Compostos de Silício/química , Carga Viral/métodos
8.
Anal Chem ; 90(3): 1511-1515, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29350898

RESUMO

Bioinspired pore sensing for selective detection of flagellated bacteria was investigated. The Au micropore wall surface was modified with a synthetic peptide designed from toll-like receptor 5 (TLR5) to mimic the pathogen-recognition capability. We found that intermolecular interactions between the TLR5-derived recognition peptides and flagella induce ligand-specific perturbations in the translocation dynamics of Escherichia coli, which facilitated the discrimination between the wild-type and flagellin-deletion mutant (ΔfliC) by the resistive pulse patterns thereby demonstrating the sensing of bacteria at a single-cell level. These results provide a novel concept of utilizing weak intermolecular interactions as a recognition probes for single-cell microbial identification.


Assuntos
Escherichia coli/citologia , Peptídeos/química , Receptor 5 Toll-Like/química , Flagelina/química , Flagelina/genética , Humanos , Mutação
9.
Sensors (Basel) ; 18(12)2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30562931

RESUMO

In this study, we developed a surface plasmon resonance (SPR) sensor chip based on 2,4,6-trinitrotoluene (TNT) recognition peptide-modified single-walled carbon nanotubes (SWCNTs). The carboxylic acid-functionalized SWCNTs were immobilized on a 3-aminopropyltriethoxysilane (APTES)-modified SPR Au chip surface. Through π-stacking between the aromatic amino acids and SWCNTs, the TNT recognition peptide TNTHCDR3 was immobilized onto the surface of the SWCNTs. The peptide⁻SWCNTs-modified sensor surface was confirmed and evaluated by atomic force microscope (AFM) observation. The peptide⁻SWCNTs hybrid SPR sensor chip exhibited enhanced sensitivity with a limit of detection (LOD) of 772 ppb and highly selective detection compared with commercialized carboxymethylated dextran matrix sensor chips.

10.
Sensors (Basel) ; 17(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28973962

RESUMO

In this study, a rationally-designed 2,4,6-trinitrotoluene (TNT) binding peptide derived from an amino acid sequence of the complementarity-determining region (CDR) of an anti-TNT monoclonal antibody was used for TNT detection based on a maleimide-functionalized surface plasmon resonance (SPR) sensor. By antigen-docking simulation and screening, the TNT binding candidate peptides were obtained as TNTHCDR1 derived from the heavy chain of CDR1, TNTHCDR2 derived from CDR2, and TNTHCDR3 from CDR3 of an anti-TNT antibody. The binding events between candidate peptides and TNT were evaluated using the SPR sensor by direct determination based on the 3-aminopropyltriethoxysilane (APTES) surface. The TNT binding peptide was directly immobilized on the maleimide-functionalized sensor chip surface from N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS). The results demonstrated that peptide TNTHCDR3 was identified and selected as a TNT binding peptide among the other two candidate peptides. Five kinds of TNT analogues were also investigated to testify the selectivity of TNT binding peptide TNTHCDR3. Furthermore, the results indicated that the APTES-GMBS-based SPR sensor chip procedure featured a great potential application for the direct detection of TNT.

11.
Biotechnol Bioeng ; 113(1): 112-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26175102

RESUMO

Cyanobacteria can be utilized as a potential biocatalyst for the production of biofuels and biochemicals directly from CO2. Useful mutants of cyanobacteria, which can grow rapidly or are resistant to specific metabolic products, are essential to improve the productivity of biofuels. In this study, we developed a single cell culture system to effectively screen mutant cyanobacteria using magnetite nanoparticles and magnetic force. Lens culinaris Agglutinin (LCA) was selected as a lectin, which binds to the surface of Synechococcus elongatus PCC7942 cells and the LCA-conjugated magnetite cationic liposomes (MCLs) were developed for magnetic labeling of PCC7942 cells. The MCL-labeled PCC7942 cells were magnetically patterned at a single cell level by using 6,400 iron pillars of the pin-holder device. The device enabled 1,600 single cells to be arrayed in one square centimeter. We cultured the patterned cells in liquid medium and achieved higher colony-forming ratio (78.4%) than that obtained using conventional solid culture method (4.8%). Single cells with different properties could be distinguished in the single cell culture system depending on their growth. Furthermore, we could selectively pick up the target cells and subsequently perform efficient isolation culture. The ratio of successful isolation culture using the developed method was 13 times higher than that of the conventional methods. Thus, the developed system would serve as a powerful tool for screening mutant cyanobacteria.


Assuntos
Biocombustíveis , Lipossomos , Magnetismo , Nanopartículas de Magnetita , Mutação , Lectinas de Plantas/metabolismo , Synechococcus/crescimento & desenvolvimento , Synechococcus/efeitos dos fármacos , Synechococcus/genética , Synechococcus/metabolismo
12.
Bioprocess Biosyst Eng ; 38(9): 1693-704, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25964183

RESUMO

Detecting and analyzing circulating tumor cells (CTCs) in the blood of cancer patients is a promising approach for the early diagnosis of metastasis. Previously, we developed a size-selective filter for capturing CTCs, but its use was time consuming, particularly for capturing CTCs from large volumes of blood. In the present study, we describe the use of a magnetic capture column for rapid and efficient isolation of CTCs, which were magnetically labeled with magnetite cationic liposomes. In the capturing process, large volumes of blood containing magnetically labeled cancer cells were introduced into the column at a high flow rate to capture the cells, which were then added into the filter at a low flow rate. Our results show that the combined use of the column and filter decreased the required time for the spiked cancer cell capture, and the recovery rate of the spiked cancer cells from blood was significantly higher using the combination process (80.7 %) than that using the filter alone (64.7 %). Moreover, almost twice the number of CTCs could be captured from the blood of metastatic model mice using the combination process. These results suggest that the developed process would be useful for the rapid and efficient isolation of CTCs.


Assuntos
Remoção de Componentes Sanguíneos/instrumentação , Separação Celular/instrumentação , Hemofiltração/instrumentação , Separação Imunomagnética/instrumentação , Células Neoplásicas Circulantes/patologia , Ultrafiltração/instrumentação , Animais , Linhagem Celular Tumoral , Dispositivos Lab-On-A-Chip , Camundongos
13.
FEBS Lett ; 598(4): 437-445, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38339800

RESUMO

Migrasomes are extracellular vesicles that form on the retraction fibers of migrating cells. In this study, we report the formation of migrasome-like vesicles enriched in tetraspanin 4 and containing cytoplasmic components in response to hypoosmotic stress. When migrating cells were subjected to hypoosmotic stress, vesicles with a size distribution of 0.5 to 2 µm formed on the retraction fibers, and vanished in a few minutes. The vesicles are rich in cholesterol, and their number was reduced when cells were pretreated with lipoprotein-deficient serum. The formation of migrasome-like vesicles upon hypoosmotic stress may provide biophysical cues regarding the cellular response to this external stimulus in cells and tissues.


Assuntos
Organelas , Pressão Osmótica , Citoplasma , Citosol
14.
J Biosci Bioeng ; 137(2): 94-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092600

RESUMO

Dipeptidyl peptidase IV (DPP-IV) has become an important target in the prevention and treatment of diabetes. Although many DPP-IV inhibitory peptides have been identified by a general approach involving the repeated fractionation of food protein hydrolysates, the obtained results have been dependent on the content of each peptide and fractionation conditions. In the present study, a peptide array that provides comprehensive assays of peptide sequences was used to identify novel DPP-IV inhibitory peptides derived from bovine milk proteins; these peptides were then compared with those identified using the general approach. While the general approach identified only known peptides that were abundant in the hydrolysate, the peptide array-based approach identified 10 novel DPP-IV inhibitory peptides, all of which had proline at the second residue from the N-terminus. The proper or combined use of these two approaches, which have different advantages, will enable the efficient development of novel bioactive foods and drugs.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Proteínas do Leite , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Peptídeos/química , Sequência de Aminoácidos
15.
ACS Appl Mater Interfaces ; 16(15): 18564-18573, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567738

RESUMO

Replicating the sense of smell presents an ongoing challenge in the development of biomimetic devices. Olfactory receptors exhibit remarkable discriminatory abilities, including the enantioselective detection of individual odorant molecules. Graphene has emerged as a promising material for biomimetic electronic devices due to its unique electrical properties and exceptional sensitivity. However, the efficient detection of nonpolar odor molecules using transistor-based graphene sensors in a gas phase in environmental conditions remains challenging due to high sensitivity to water vapor. This limitation has impeded the practical development of gas-phase graphene odor sensors capable of selective detection, particularly in humid environments. In this study, we address this challenge by introducing peptide-functionalized graphene sensors that effectively mitigate undesired responses to changes in humidity. Additionally, we demonstrate the significant role of humidity in facilitating the selective detection of odorant molecules by the peptides. These peptides, designed to mimic a fruit fly olfactory receptor, spontaneously assemble into a monomolecular layer on graphene, enabling precise and specific odorant detection. The developed sensors exhibit notable enantioselectivity, achieving a remarkable 35-fold signal contrast between d- and l-limonene. Furthermore, these sensors display distinct responses to various other biogenic volatile organic compounds, demonstrating their versatility as robust tools for odor detection. By acting as both a bioprobe and an electrical signal amplifier, the peptide layer represents a novel and effective strategy to achieve selective odorant detection under normal atmospheric conditions using graphene sensors. This study offers valuable insights into the development of practical odor-sensing technologies with potential applications in diverse fields.


Assuntos
Técnicas Biossensoriais , Grafite , Receptores Odorantes , Odorantes , Grafite/química , Gases , Estereoisomerismo , Receptores Odorantes/química , Peptídeos
16.
Biomolecules ; 13(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979448

RESUMO

CD81, a transmembrane protein belonging to the tetraspanin family, has recently been suggested as a therapeutic target for cancers. Here, we screened peptides that bind to the tetraspanin CD81 protein, and evaluated their inhibitory activity in cancer cell migration. To screen for CD81-binding peptides (CD81-BP), a peptide array membrane was prepared from the amino acid sequence of the EWI-2 protein, a major partner of CD81, before binding to fluorescently labeled CD81. As a result, four candidate CD81-BPs were identified and characterized. In particular, the CFMKRLRK peptide (called P152 in this study) was found to be the best candidate that preferentially binds to the extracellular loop of CD81, with an estimated dissociation constant of 0.91 µM. Since CD81 was reported to promote cancer cell migration, an initial step in metastasis, the Boyden chamber assay, was next performed to assess the effect of CD81-BP candidates on the migration of MDA-MB-231 human breast cancer cells. Interestingly, our result indicated that P152 could suppress MDA-MB-231 cell migration at the level comparable to that of an anti-human CD81 antibody (5A6). Thus, we propose these CD81-BPs with the anti-migration property against cancer cells for the development of novel therapeutic strategies.


Assuntos
Antígenos CD , Neoplasias , Humanos , Antígenos CD/metabolismo , Tetraspanina 28/metabolismo , Detecção Precoce de Câncer , Tetraspaninas , Peptídeos/farmacologia , Movimento Celular
17.
Biomater Adv ; 146: 213283, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640525

RESUMO

As an organizer of multi-molecular membrane complexes, the tetraspanin CD9 has been implicated in a number of biological processes, including cancer metastasis, and is a candidate therapeutic target. Here, we evaluated the suppressive effects of an eight-mer CD9-binding peptide (CD9-BP) on cancer cell metastasis and its mechanisms of action. CD9-BP impaired CD9-related functions by adversely affecting the formation of tetraspanin webs-networks composed of CD9 and its partner proteins. The anti-cancer metastasis effect of CD9-BP was evidenced by the in vitro inhibition of cancer cell migration and invasion as well as exosome secretion and uptake, which are essential processes during metastasis. Finally, using a mouse model, we showed that CD9-BP reduced lung metastasis in vivo. These findings provide insight into the mechanism by which CD9-BP inhibits CD9-dependent functions and highlight its potential application as an alternative therapeutic nano-biomaterial for metastatic cancers.


Assuntos
Neoplasias , Oligopeptídeos , Tetraspanina 29 , Humanos , Neoplasias/patologia , Neoplasias/terapia , Tetraspanina 29/metabolismo , Metástase Neoplásica , Oligopeptídeos/metabolismo , Oligopeptídeos/uso terapêutico
18.
Biosens Bioelectron ; 224: 115047, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36628827

RESUMO

Gas sensing based on graphene field-effect transistors (GFETs) has gained broad interest due to their high sensitivity. Further progress in gas sensing with GFETs requires to detection of various odor molecules for applications in the environmental monitoring, healthcare, food, and cosmetic industries. To develop the ubiquitous odor-sensing system, establishing an artificial sense of smell with electronic devices by mimicking olfactory receptors will be key. Although the application of olfactory receptors to GFETs is straightforward for odor sensing, synthetic molecules with a similar function to olfactory receptors would be desirable to realize the robust performance of sensing. In this work, we designed three new peptides consisting of two domains: a bio-probe to the target molecules and a molecular scaffold. These peptides were rationally designed based on a motif sequence in olfactory receptors and self-assembled into a molecular thin film on GFETs. Limonene, methyl salicylate, and menthol were employed as representative odor molecules of plant flavors to demonstrate the biosensing of odor molecules. The conductivity change of GFETs against the binding to odor molecules with various concentrations and the dynamic response revealed a distinct signature of three different peptides against individual species of the target molecules. The kinetic response of each peptide exhibited characteristic time constants in the adsorption and desorption process, also supported by the principal component analysis. Our demonstration of the graphene odor sensors with the designed peptides opens a way to establish future peptide-array sensors with multi-sequence of peptide, realizing an odor sensing system with higher selectivity.


Assuntos
Técnicas Biossensoriais , Grafite , Receptores Odorantes , Odorantes , Grafite/química , Transistores Eletrônicos , Peptídeos
19.
Biotechnol Bioeng ; 109(7): 1808-16, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22359201

RESUMO

Controlling the balance of endothelial cells (ECs) and smooth muscle cells (SMCs) in blood vessels is critically important to minimize the risk associated with vascular implants. Extracellular matrix (ECM) plays a key role in controlling the cellular balance, suggesting a promising source of cell-selective peptides. To obtain EC- or SMC-selective peptides, we start by highlighting sequence differences found among ECM molecules as enriched targets for cell-selective peptides. We explored the EC- or SMC-selective performance of tripeptides that are specifically enriched only in collagen type IV, but not in types I, II, III, and V. Collagen type IV was chosen since it is the major ECM in the basement membrane of blood vessels, which separates ECs and SMCs. Among 114 collagen type IV-derived tripeptides pre-screened from in silico analysis, 22 peptides (19%) were found to promote cell-selective adhesion, as determined by peptide array. One of the best performing EC-selective peptides (Cys-Ala-Gly (CAG)) was mixed into an electrospun fine-fiber, a vascular graft material, for practical application. Compared to unmodified fiber, the CAG containing fiber surface was found to enhance adhesion of ECs (+190%) while limiting SMCs (-20%). These results are not only consistent with the hypothesis of ECM as a source of cell selective peptides, but also suggest a new genre of EC- or SMC-selective peptides for tissue engineering applications. Collectively, these findings favorably support the screening approach used to discover new peptides for these purposes.


Assuntos
Prótese Vascular , Colágeno Tipo IV/química , Células Endoteliais/citologia , Músculo Liso Vascular/citologia , Oligopeptídeos/química , Aorta/citologia , Adesão Celular , Linhagem Celular , Matriz Extracelular/química , Humanos
20.
Biosci Biotechnol Biochem ; 76(4): 819-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22484961

RESUMO

Peptide arrays in which peptides were immobilized on cellulose membranes through photolinkers were synthesized. The peptides were subsequently detached from the arrays by ultraviolet (UV) photolysis for 3 h, and were used to search for functional peptides that inhibit the activity of α-amylase derived from human pancreatic juice. Amino acid replacement with high-molecular-size amino acids, Arg (R), Phe (F), Trp (W), or Tyr (Y), for the first and seventh residues of amylase inhibitor peptide, GHWYYRCW, as previous reported, led to enhancement of the inhibitory effect of the peptide on α-amylase. In particular, one of the resulting peptides, RHWYYRYW, showed a stronger inhibitory effect than acarbose (which is used as a hypoglycemic agent) or inhibitor peptide GHWYYRCW.


Assuntos
Suco Pancreático/química , Peptídeos/síntese química , alfa-Amilases/química , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Sítios de Ligação , Celulose/química , Humanos , Proteínas Imobilizadas/antagonistas & inibidores , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Peptídeos/metabolismo , Fotólise , Análise Serial de Proteínas , Ligação Proteica , Raios Ultravioleta , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA