Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Rev Endocr Metab Disord ; 23(4): 733-751, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34851508

RESUMO

Bariatric surgery results in long-term weight loss and an improved metabolic phenotype due to changes in the gut-brain axis regulating appetite and glycaemia. Neuroendocrine alterations associated with bariatric surgery may also influence hedonic aspects of eating by inducing changes in taste preferences and central reward reactivity towards palatable food. However, the impact of bariatric surgery on disordered eating behaviours (e.g.: binge eating, loss-of-control eating, emotional eating and 'addictive eating'), which are commonly present in people with obesity are not well understood. Increasing evidence suggests gut-derived signals, such as appetitive hormones, bile acid profiles, microbiota concentrations and associated neuromodulatory metabolites, can influence pathways in the brain implicated in food intake, including brain areas involved in sensorimotor, reward-motivational, emotional-arousal and executive control components of food intake. As disordered eating prevalence is a key mediator of weight-loss success and patient well-being after bariatric surgery, understanding how changes in the gut-brain axis contribute to disordered eating incidence and severity after bariatric surgery is crucial to better improve treatment outcomes in people with obesity.


Assuntos
Cirurgia Bariátrica , Transtornos da Alimentação e da Ingestão de Alimentos , Encéfalo , Ingestão de Alimentos , Comportamento Alimentar/fisiologia , Humanos , Obesidade/cirurgia , Redução de Peso/fisiologia
2.
FASEB J ; 31(11): 4879-4890, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28798153

RESUMO

The functional recruitment of classic brown adipose tissue (BAT) and inducible brown-like or beige fat is, to a large extent, dependent on intact sympathetic neural input. Whereas the central neural circuits directed specifically to BAT or white adipose tissue (WAT) are well established, there is only a developing insight into the nature of neural inputs common to both fat types. Moreover, there is no clear view of the specific central and peripheral innervation of the browned component of WAT: beige fat. The objective of the present study is to examine the neural input to both BAT and WAT in the same animal and, by exposing different cohorts of rats to either thermoneutral or cold conditions, define changes in central neural organization that will ensure that beige fat is appropriately recruited and modulated after browning of inguinal WAT (iWAT). At thermoneutrality, injection of the neurotropic (pseudorabies) viruses into BAT and WAT demonstrates that there are dedicated axonal projections, as well as collateral axonal branches of command neurons projecting to both types of fat. After cold exposure, central neural circuits directed to iWAT showed evidence of reorganization with a greater representation of command neurons projecting to both brown and beiged WAT in hypothalamic (paraventricular nucleus and lateral hypothalamus) and brainstem (raphe pallidus and locus coeruleus) sites. This shift was driven by a greater number of supraspinal neurons projecting to iWAT under cold conditions. These data provide evidence for a reorganization of the nervous system at the level of neural connectivity following browning of WAT.-Wiedmann, N. M., Stefanidis, A., Oldfield, B. J. Characterization of the central neural projections to brown, white, and beige adipose tissue.


Assuntos
Tecido Adiposo Bege/inervação , Tecido Adiposo Marrom/inervação , Tecido Adiposo Branco/inervação , Axônios/fisiologia , Regulação da Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
3.
Neuroendocrinology ; 107(4): 340-354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30208370

RESUMO

BACKGROUND/AIMS: Abuse of toluene products (e.g., glue-sniffing) primarily occurs during adolescence and has been associated with appetite suppression and weight impairments. However, the metabolic phenotype arising from adolescent inhalant abuse has never been fully characterised, and its persistence during abstinence and underlying mechanisms remain unknown. METHODS: Adolescent male Wistar rats (post-natal day 27) were exposed to inhaled toluene (10,000 ppm) (n = 32) or air (n = 48) for 1 h/day, 3 days/week for 4 weeks, followed by 4 weeks of abstinence. Twenty air rats were pair-fed to the toluene group, to differentiate the direct effects of toluene from under-nutrition. Food intake, weight, and growth were monitored. Metabolic hormones were measured after exposure and abstinence periods. Energy expenditure was measured using indirect calorimetry. Adrenal function was assessed using adrenal histology and hormone testing. RESULTS: Inhalant abuse suppressed appetite and increased energy expenditure. Reduced weight gain and growth were observed in both the toluene and pair-fed groups. Compared to the pair-fed group, and despite normalisation of food intake, the suppression of weight and growth for toluene-exposed rats persisted during abstinence. After exposure, toluene-exposed rats had low fasting blood glucose and insulin compared to the air and pair-fed groups. Consistent with adrenal insufficiency, adrenal hypertrophy and increased basal adrenocorticotropic hormone were observed in the toluene-exposed rats, despite normal basal corticosterone levels. CONCLUSIONS: Inhalant abuse results in negative energy balance, persistent growth impairment, and endocrine changes suggestive of adrenal insufficiency. We conclude that adrenal insufficiency contributes to the negative energy balance phenotype, potentially presenting a significant additional health risk for inhalant users.


Assuntos
Doenças das Glândulas Suprarrenais/induzido quimicamente , Transtornos do Crescimento/induzido quimicamente , Abuso de Inalantes/complicações , Doenças Metabólicas/induzido quimicamente , Maturidade Sexual , Adolescente , Comportamento do Adolescente/efeitos dos fármacos , Comportamento do Adolescente/fisiologia , Desenvolvimento do Adolescente/efeitos dos fármacos , Doenças das Glândulas Suprarrenais/metabolismo , Doenças das Glândulas Suprarrenais/fisiopatologia , Glândulas Suprarrenais/fisiopatologia , Animais , Apetite/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/fisiopatologia , Humanos , Abuso de Inalantes/metabolismo , Abuso de Inalantes/patologia , Abuso de Inalantes/fisiopatologia , Masculino , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Atividade Motora/efeitos dos fármacos , Fenótipo , Ratos , Ratos Wistar , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Tolueno/toxicidade
4.
Neuroendocrinology ; 103(3-4): 223-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26088805

RESUMO

BACKGROUND/AIMS: Ciliary neurotrophic factor (CNTF) exerts powerful anorectic effects and has been suggested to regulate long-term energy balance by inducing adult neurogenesis in the arcuate nucleus of the hypothalamus. METHODS: The CNTF analogue, Axokine, was infused into the lateral ventricle of high-fat-fed mice for 1 week. Food intake, energy expenditure, body mass, glucose metabolism, and neurogenesis in the arcuate nucleus (ARC) of the hypothalamus were assessed 3 weeks after cessation of Axokine treatment. RESULTS: Short-term administration of Axokine induced an anorexic response but did not promote sustained weight loss. Instead, a rapid rebound in food intake and body mass occurred immediately after cessation of Axokine treatment, and this tended to reduce insulin sensitivity. Immunolabeling of 5-bromo-2'-deoxyuridine revealed limited neurogenesis in the ARC 3 weeks after Axokine treatment. CONCLUSION: These findings suggest that Axokine/CNTF does not induce substantial or sustained ARC neurogenesis or contribute to the long-term regulation of energy balance in mice.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Fator Neurotrófico Ciliar/farmacologia , Metabolismo Energético/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Glucose/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Injeções Intraventriculares , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fatores de Tempo
5.
Cell Mol Life Sci ; 72(3): 629-644, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25098352

RESUMO

The adipocyte-derived cytokine leptin acts as a metabolic switch, connecting the body's metabolism to high-energy consuming processes such as reproduction and immune responses. We here provide genetic and biochemical evidence that the metabolic and immune functions of leptin can be uncoupled at the receptor level. First, homozygous mutant fatt/fatt mice carry a spontaneous splice mutation causing deletion of the leptin receptor (LR) immunoglobulin-like domain (IGD) in all LR isoforms. These mice are hyperphagic and morbidly obese, but display only minimal changes in size and cellularity of the thymus, and cellular immune responses are unaffected. These animals also displayed liver damage in response to concavalin A comparable to wild-type and heterozygous littermates. Second, treatment of healthy mice with a neutralizing nanobody targeting IGD induced weight gain and hyperinsulinaemia, but completely failed to block development of experimentally induced autoimmune diseases. These data indicate that leptin receptor deficiency or antagonism profoundly affects metabolism, with little concomitant effects on immune functions.


Assuntos
Leptina/imunologia , Leptina/metabolismo , Receptores para Leptina/metabolismo , Análise de Variância , Animais , Artrite Experimental/patologia , Sequência de Bases , Western Blotting , Doença Hepática Induzida por Substâncias e Drogas/patologia , Primers do DNA/genética , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Citometria de Fluxo , Células HEK293 , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Glicoproteína Mielina-Oligodendrócito/toxicidade , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Receptores para Leptina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Deleção de Sequência/genética
6.
Clin Obes ; 14(3): e12644, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332544

RESUMO

To identify perceptions and attitudes among people with obesity (PwO) and healthcare professionals (HCPs) toward obesity and its management in nine Asia-Pacific (APAC) countries, a cross-sectional online survey was conducted among adult PwO with self-reported body mass index of ≥25 kg/m2 (≥27 kg/m2, Singapore), and HCPs involved in direct patient care. In total, 10 429 PwO and 1901 HCPs completed the survey. Most PwO (68%) and HCPs (84%) agreed that obesity is a disease; however, a significant proportion of PwO (63%) and HCPs (41%) believed weight loss was the complete responsibility of PwO and only 43% of PwO discussed weight with an HCP in the prior 5 years. Most respondents acknowledged that weight loss would be extremely beneficial to PwO's overall health (PwO 76%, HCPs 85%), although nearly half (45%) of PwO misperceived themselves as overweight or of normal weight. Obesity was perceived by PwO (58%) and HCPs (53%) to negatively impact PwO forming romantic relationships. HCPs cited PwOs' lack of interest (41%) and poor motivation (37%) to lose weight as top reasons for not discussing weight. Most PwO (65%) preferred lifestyle changes over medications to lose weight. PwO and HCPs agreed that lack of exercise and unhealthy eating habits were the major barriers to weight loss. Our data highlights a discordance between the understanding of obesity as a disease and the actual behaviour and preferred approaches to manage it among PwO and HCPs. The study addresses a need to align these gaps to deliver optimal care for PwO.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Obesidade , Humanos , Obesidade/psicologia , Obesidade/terapia , Masculino , Feminino , Adulto , Estudos Transversais , Pessoa de Meia-Idade , Sudeste Asiático , Redução de Peso , Atitude do Pessoal de Saúde , Inquéritos e Questionários , Ásia , Adulto Jovem , Índice de Massa Corporal , Manejo da Obesidade/métodos , Idoso
7.
J Neurosci ; 32(45): 15913-21, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136429

RESUMO

Retroperitoneal white adipose tissue (rWAT) and subcutaneous (inguinal) white adipose tissue (iWAT) are both innervated and regulated by sympathetic efferents, but the distribution and identity of the cells in the brain that regulate sympathetic outflow are poorly characterized. Our aim was to use two isogenic strains of a neurotropic virus (pseudorabies, Bartha) tagged with either green or red fluorescent reporters to identify cells in the brain that project to rWAT and/or iWAT. These viruses were injected into separate WAT depots in male and female Sprague Dawley rats. Retrogradely labeled neurons in the CNS were characterized by immunohistochemistry and PCR. For the latter, laser capture of individual virally labeled neurons was used. All virally labeled brain regions contained neurons projecting to either and both WAT depots. Neurons to abdominal fat were the most abundant in males, whereas females contained a greater proportion of neurons to subcutaneous via private lines and collateral branches. Retrogradely labeled neurons directed to WAT expressed estrogen receptor-α (ERα), and fewer neurons to subcutaneous WAT expressed ERα in males. Regardless of sex, projections from the arcuate nucleus were predominantly from pro-opiomelanocortin cells, with a notable lack of projections from agouti-related protein-expressing neurons. Within the lateral hypothalamus, neurons directed to rWAT and iWAT expressed orexin and melanin-concentrating hormone (MCH), but male rats had a predominance of MCH directed to iWAT. In conclusion, the neurochemical substrates that project through polysynaptic pathways to iWAT and rWAT are different in male and female rats, suggesting that metabolic regulation of rWAT and iWAT is sexually dimorphic.


Assuntos
Gordura Abdominal/inervação , Tecido Adiposo Branco/inervação , Encéfalo/metabolismo , Neurônios/metabolismo , Caracteres Sexuais , Gordura Subcutânea/inervação , Gordura Abdominal/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Receptor alfa de Estrogênio/metabolismo , Feminino , Hormônios Hipotalâmicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Melaninas/metabolismo , Vias Neurais/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Hormônios Hipofisários/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Gordura Subcutânea/metabolismo
8.
Neuroendocrinology ; 95(4): 305-16, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22286004

RESUMO

OBJECTIVE: Gonadotropin-inhibitory hormone (GnIH)-3 is a neuropeptide that plays a major role in the regulation of reproduction and feeding in mammals. MATERIALS AND METHODS: We measured endocrine and behavioural parameters of reproduction in sheep, and sexual behaviour in sheep, mice and cynomolgus monkeys. In addition, GnIH gene expression (in situ hybridization) was examined in ewes, and effects of GnIH-3 on food intake and energy expenditure were measured in various species. GnIH-3 was infused (i.v.) into ewes after an i.m. injection of estradiol benzoate to determine whether the peptide blocks the surge in luteinizing hormone (LH) secretion. RESULTS: GnIH gene expression was reduced in the preovulatory period in ewes. Infusion (i.v.) of GnIH-3 blocked the estrogen-induced LH surge (in ewes). Intracerebroventricular infusion had no effect on female or male sexual behaviour in each of the three species, but increased food intake. There were no effects on energy expenditure in sheep or rats. GnIH increased fos protein (immunohistochemistry) was seen in orexigenic neurons (in sheep and rats), but also in anorexigenic neurons (in sheep). CONCLUSIONS: GnIH-3 reduces reproductive hormone levels and increases food intake in mammals without reducing energy expenditure. There is minimal effect on reproductive behaviour. The dual effect on reproduction and feeding suggests that GnIH-3 provides a molecular switch between these two functions. Blockade of the positive feedback effect of estrogen with parenteral infusion indicates that this peptide may have utility as a blocker of reproductive function in mammals.


Assuntos
Comportamento Alimentar/fisiologia , Glicoproteínas/fisiologia , Hormônios Hipotalâmicos/fisiologia , Reprodução , Animais , Avaliação Pré-Clínica de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Genes de Troca/fisiologia , Glicoproteínas/genética , Glicoproteínas/farmacologia , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/farmacologia , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , Neuropeptídeos/fisiologia , Ratos , Reprodução/efeitos dos fármacos , Reprodução/genética , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Ovinos
9.
Biology (Basel) ; 11(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625351

RESUMO

Brain-derived neurotrophic factor (BDNF) is abundantly expressed in brain regions involved in both homeostatic and hedonic feeding, and it circulates at reduced levels in patients with anorexia nervosa (AN). A single nucleotide polymorphism in the gene encoding for BDNF (Val66Met) has been associated with worse outcomes in patients with AN, and it is shown to promote anorectic behaviour in a mouse model of caloric restriction paired with social isolation stress. Previous animal models of the Val66Met polymorphism have been in mice because of the greater ease in modification of the mouse genome, however, the most widely-accepted animal model of AN, known as activity-based anorexia (ABA), is most commonly conducted in rats. Here, we examine ABA outcomes in a novel rat model of the BDNF Val66Met allelic variation (Val68Met), and we investigate the role of this polymorphism in feeding, food choice and sucrose preference, and energy expenditure. We demonstrate that the BDNF Val68Met polymorphism does not influence susceptibility to ABA or any aspect of feeding behaviour. The discrepancy between these results and previous reports in mice may relate to species-specific differences in stress reactivity.

10.
Pediatr Res ; 70(4): 339-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21885936

RESUMO

A suboptimal in utero environment leads to fetal adaptations to ensure short-term survival but in the long-term may lead to disease when the postnatal growth does not reflect that in utero. This study examined the effect of IUGR on whole body insulin sensitivity and metabolic activity in adult rats. Female Wistar-Kyoto rats were fed either a normal protein diet (NPD 20% casein) or a low protein diet (LPD; 8.7% casein) during pregnancy and 2 wk of lactation. In offspring at 32 wk of age, indirect calorimetry and dual energy x-ray absorptiometry (DEXA) were performed to assess metabolic activity and body composition. Insulin sensitivity was assessed using a euglycemic-hyperinsulinemic clamp. At 3 d of age, male and female LPD offspring were 23 and 27% smaller than controls, respectively. They remained significantly smaller throughout the experimental period (∼10% smaller at 32 wk). Importantly, there was increased insulin sensitivity in LPD offspring (47% increase in males and 38% increase in females); pancreatic insulin content was normal. Body composition, O2 consumption, respiratory exchange ratio (RER), and locomotor activity were not different to controls. These findings suggest that in the absence of "catch-up" growth IUGR programs for improved insulin sensitivity.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Retardo do Crescimento Fetal/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Absorciometria de Fóton , Animais , Composição Corporal , Peso Corporal , Dieta , Metabolismo Energético , Feminino , Técnica Clamp de Glucose , Masculino , Gravidez , Distribuição Aleatória , Ratos , Ratos Endogâmicos WKY
11.
Artigo em Inglês | MEDLINE | ID: mdl-34217755

RESUMO

Higher-order executive functions such as decision-making, cognitive flexibility and behavioural control are critical to adaptive success in all aspects of life, including the maintenance of a healthy body weight by regulating food intake. Performance on tasks designed to assess these aspects of cognition is impaired in individuals with obesity and anorexia nervosa (AN); conditions at either end of a spectrum of body weight disturbance. While the conceptualisation of obesity and AN as mirror images of each other makes some sense from a metabolic point of view, whether or not these conditions also reflect opposing states of executive function is less clear. Here, we review evidence from neurocognitive and neuroimaging studies to compare the direction and extent of executive dysfunction in subjects with obesity and AN and how these are underpinned by changes in structure and function of subregions of the prefrontal cortex (PFC). Both conditions of extreme body weight disturbance are associated with impaired decision-making and cognitive inflexibility, however, impulsive behaviour presents in opposing directions; obesity being associated with reduced behavioural control and AN being associated with elevated control over behaviour with respect to food and feeding. Accordingly, the subregions of the PFC that guide inhibitory control and valuation of action outcomes (dorsolateral prefrontal cortex and orbitofrontal cortex) show opposite patterns of activation in subjects with obesity compared to those with AN, whereas the subregions implicated in cognitive and behavioural flexibility (ventromedial prefrontal cortex and anterior cingulate cortex) show alterations in the same direction in both conditions but with differential extent of dysfunction. We synthesise these findings in the context of the utility of animal models of obesity and AN to interrogate the detail of the neurobiological contributions to cognition in patient populations and the utility of such detail to inform future treatment strategies that specifically target executive dysfunction.


Assuntos
Anorexia Nervosa/fisiopatologia , Função Executiva/fisiologia , Comportamento Alimentar/fisiologia , Obesidade/fisiopatologia , Animais , Peso Corporal/fisiologia , Cognição/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiopatologia , Giro do Cíngulo/fisiopatologia , Humanos , Comportamento Impulsivo , Neuroimagem , Córtex Pré-Frontal/fisiopatologia
12.
Biol Psychiatry ; 90(12): 819-828, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32892984

RESUMO

BACKGROUND: The ability to adapt behavior to changing environmental circumstances, or cognitive flexibility, is impaired in multiple psychiatric conditions, including anorexia nervosa (AN). Exaggerated prefrontal cortical activity likely underpins the inflexible thinking and rigid behaviors exhibited by patients with AN. A better understanding of the neural basis of cognitive flexibility is necessary to enable treatment approaches that may target impaired executive control. METHODS: Utilizing the activity-based anorexia (ABA) model and touchscreen operant learning paradigms, we investigated the neurobiological link between pathological weight loss and cognitive flexibility. We used pathway-specific chemogenetics to selectively modulate activity in neurons of the medial prefrontal cortex (mPFC) projecting to the nucleus accumbens shell (AcbSh) in female Sprague Dawley rats. RESULTS: DREADD (designer receptor exclusively activated by designer drugs)-based inhibition of the mPFC-AcbSh pathway prevented weight loss in ABA and improved flexibility during early reversal learning by reducing perseverative responding. Modulation of activity within the mPFC-AcbSh pathway had no effect on running, locomotor activity, or feeding under ad libitum conditions, indicating the specific involvement of this circuit in conditions of dysregulated reward. CONCLUSIONS: Parallel attenuation of weight loss in ABA and improvement of cognitive flexibility following suppression of mPFC-AcbSh activity align with the relationship between disrupted prefrontal function and cognitive rigidity in AN patients. The identification of a neurobiological correlate between cognitive flexibility and pathological weight loss provides a unique insight into the executive control of feeding behavior. It also highlights the utility of the ABA model for understanding the biological bases of cognitive deficits in AN and provides context for new treatment strategies.


Assuntos
Anorexia , Córtex Pré-Frontal , Animais , Cognição , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Redução de Peso
13.
Am J Physiol Regul Integr Comp Physiol ; 298(2): R411-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19939975

RESUMO

ANG II, the main circulating effector hormone of the renin-angiotensin system, is produced by enzymatic cleavage of angiotensinogen. The present study aimed to examine whether targeted deletion of the angiotensinogen gene (Agt) altered brain ANG II receptor density or responsiveness to ANG II. In vitro autoradiography was used to examine the distribution and density of angiotensin type 1 (AT(1)) and type 2 receptors. In most brain regions, the distribution and density of angiotensin receptors were similar in brains of Agt knockout mice (Agt(-/-)) and wild-type mice. In Agt(-/-) mice, a small increase in AT(1) receptor binding was observed in the rostral ventrolateral medulla (RVLM), a region that plays a critical role in blood pressure regulation. To examine whether Agt(-/-) mice showed altered responses to ANG II, blood pressure responses to intravenous injection (0.01-0.1 microg/kg) or RVLM microinjection (50 pmol in 50 nl) of ANG II were recorded in anesthetized Agt(-/-) and wild-type mice. Intravenous injections of phenylephrine (4 microg/kg and 2 microg/kg) were also made in both groups. The magnitude of the pressor response to intravenous injections of ANG II or phenylephrine was not different between Agt(-/-) and wild-type mice. Microinjection of ANG II into the RVLM induced a pressor response, which was significantly smaller in Agt(-/-) compared with wild-type mice (+10 + or - 1 vs. +23 + or - 4 mmHg, respectively, P = 0.004). Microinjection of glutamate into the RVLM (100 pmol in 10 nl) produced a robust pressor response, which was not different between Agt(-/-) and wild-type mice. A diminished response to ANG II microinjection in the RVLM of Agt(-/-) mice, despite an increased density of AT(1) receptors suggests that signal transduction pathways may be altered in RVLM neurons of Agt(-/-) mice, resulting in attenuated cellular excitation.


Assuntos
Angiotensinogênio/fisiologia , Angiotensinas/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Bulbo/fisiologia , Receptor Tipo 1 de Angiotensina/metabolismo , Anestesia , Angiotensinogênio/genética , Angiotensinas/administração & dosagem , Animais , Sítios de Ligação , Ácido Glutâmico/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Bulbo/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microinjeções , Fenilefrina/administração & dosagem , Fenilefrina/farmacologia , Vasoconstritores/administração & dosagem , Vasoconstritores/farmacologia
14.
Front Neurosci ; 14: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116500

RESUMO

Anorexia nervosa (AN) has the highest mortality rate of any psychiatric disease, yet available pharmacological treatments are largely ineffective due, in part, to an inadequate understanding of the neurobiological drivers that underpin the condition. The recent resurgence of research into the clinical applications of psychedelic medicine for a range of mental disorders has highlighted the potential for classical psychedelics, including psilocybin, to alleviate symptoms of AN that relate to serotonergic signaling and cognitive inflexibility. Clinical trials using psychedelics in treatment-resistant depression have shown promising outcomes, although these studies are unable to circumvent some methodological biases. The first clinical trial to use psilocybin in patients with AN commenced in 2019, necessitating a better understanding of the neurobiological mechanisms through which psychedelics act. Animal models are beneficial in this respect, allowing for detailed scrutiny of brain function and behavior and the potential to study pharmacology without the confounds of expectancy and bias that are impossible to control for in patient populations. We argue that studies investigating the neurobiological effects of psychedelics in animal models, including the activity-based anorexia (ABA) rodent model, are particularly important to inform clinical applications, including the subpopulations of patients that may benefit most from psychedelic medicine.

15.
Eur J Neurosci ; 30(3): 415-30, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19614751

RESUMO

Central neural control of complex feeding behaviour is likely to be influenced by a number of factors including homeostatic responses to peripheral nutrient status, cortical integration of feeding-related cues and the underlying reward value of food. We have used retrogradely transported neurotropic viruses, as tools to map chains of synaptically-connected neurons, in conjunction with neurochemical markers of feeding-related peptides to expand the blueprint of the circuitries that underlie these different components of feeding behaviour. We have identified projections to insular and anterior cingulate cortex, extending from the arcuate nucleus through synaptic relays in the lateral hypothalamic area and midline thalamic nuclei. Cortically projecting neurons from the hypothalamic arcuate nucleus were found predominantly in its lateral aspects and contained anorexigenic peptides with no representation amongst more medially-positioned neurons containing orexigenic peptides. Largely overlapping pathways were shown to project multisynaptically to the shell of the nucleus accumbens but those with origins in the arcuate nucleus had either orexigenic or anorexigenic phenotypes. Similar to the cortical projections, those relaying to the nucleus accumbens in the lateral hypothalamus contained the orexigenic peptides orexin-A and melanin-concentrating hormone in approximately 30% of cases. Common to the neural pathways directed to all three virally-injected areas were nodes of synaptic relays in the lateral hypothalamus and midline thalamic nuclei. These regions are well positioned to integrate sensory information about energy homeostasis and the reward value of food in the passage of this information to the 'ingestive cortex'.


Assuntos
Comportamento Alimentar/fisiologia , Giro do Cíngulo/anatomia & histologia , Hipotálamo/anatomia & histologia , Vias Neurais/anatomia & histologia , Neurônios/citologia , Animais , Ingestão de Energia , Masculino , Ratos , Ratos Sprague-Dawley
16.
Eur J Neurosci ; 29(11): 2207-16, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19490094

RESUMO

Numerous studies have demonstrated that administration of rimonabant (SR 141716), a CB(1) receptor antagonist, causes a decrease in energy intake. However, the mechanisms by which rimonabant exerts its anorectic actions are unclear. The main focus of the study reported here was to establish the chemical identity of neurons that may subserve the anorectic effects of rimonabant. As such three approaches were utilised: (i) the identification of rimonabant-activated neurons using Fos as a marker of neuronal activity; (ii) the identification of the chemical phenotype of rimonabant-activated neurons by combining immunocytochemical identification of Fos and feeding-related peptides; and (iii) the evaluation of the effect of rimonabant on messenger RNA (mRNA) and protein for a number of feeding-related peptides. Rimonabant-induced Fos-positive nuclei were localized within a range of discrete hypothalamic regions with a predominance in the parvocellular part of the paraventricular nucleus of the hypothalamus, dorsomedial hypothalamus, arcuate nucleus and lateral hypothalamic area. Furthermore, Fos labelling within these hypothalamic regions was colocalized with anorexigenic and orexigenic peptides including melanin-concentrating hormone (MCH), orexin, cocaine- and amphetamine-regulated transcript (CART) and alpha-melanocyte-stimulating hormone (alpha-MSH). Rimonabant specifically induced a decrease in NPY and an increase in CART and alpha-MSH mRNA and protein, consistent with its effect in reducing food intake and increasing energy expenditure. As such these data provide insights into the mechanisms of action that may underpin rimonabant's effects on energy balance and body weight.


Assuntos
Depressores do Apetite/farmacologia , Antagonistas de Receptores de Canabinoides , Hormônios Hipotalâmicos/fisiologia , Hipotálamo/fisiologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptores de Canabinoides/fisiologia , Animais , Privação de Alimentos/fisiologia , Hipotálamo/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Rimonabanto
17.
Biochem Soc Trans ; 37(Pt 6): 1311-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19909267

RESUMO

Splicing is a post-transcriptional modification of RNA during which introns are removed and exons are joined. Most of the mammalian genes undergo constitutive and alternative splicing events. In addition to the strong signals of the splice sites, splicing is influenced at a distance by a range of trans factors that interact with cis regulatory elements and influence the spliceosome. The intention of the present mini-review is to give some insights into the complexity of this interaction and to introduce the consequences of some kinds of detrimental genetic variation on alternative splicing and disease.


Assuntos
Processamento Alternativo , Doença/genética , Variação Genética , Animais , Sequência de Bases , Éxons , Humanos , Íntrons , Mutação , Sequências Reguladoras de Ácido Nucleico
18.
J Neuroendocrinol ; 31(3): e12689, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30672620

RESUMO

Much progress has been made during the past 30 years with respect to elucidating the neural and endocrine pathways by which bodily needs for water and energy are brought to conscious awareness through the generation of thirst and hunger. One way that circulating hormones influence thirst and hunger is by acting on neurones within sensory circumventricular organs (CVOs). This is possible because the subfornical organ and organum vasculosum of the lamina terminalis (OVLT), the sensory CVOs in the forebrain, and the area postrema in the hindbrain lack a normal blood-brain barrier such that neurones within them are exposed to blood-borne agents. The neural signals generated by hormonal action in these sensory CVOs are relayed to several sites in the cerebral cortex to stimulate or inhibit thirst or hunger. The subfornical organ and OVLT respond to circulating angiotensin II, relaxin and hypertonicity to drive thirst-related neural pathways, whereas circulating amylin, leptin and possibly glucagon-like peptide-1 act at the area postrema to influence neural pathways inhibiting food intake. As a result of investigations using functional brain imaging techniques, the insula and anterior cingulate cortex, as well as several other cortical sites, have been implicated in the conscious perception of thirst and hunger in humans. Viral tracing techniques show that the anterior cingulate cortex and insula receive neural inputs from thirst-related neurones in the subfornical organ and OVLT, with hunger-related neurones in the area postrema having polysynaptic efferent connections to these cortical regions. For thirst, initially, the median preoptic nucleus and, subsequently, the thalamic paraventricular nucleus and lateral hypothalamus have been identified as likely sites of synaptic links in pathways from the subfornical organ and OVLT to the cortex. The challenge remains to identify the links in the neural pathways that relay signals originating in sensory CVOs to cortical sites subserving either thirst or hunger.


Assuntos
Córtex Cerebral/fisiologia , Órgãos Circunventriculares/fisiologia , Fome/fisiologia , Neurônios/fisiologia , Sede/fisiologia , Animais , Humanos , Vias Neurais/fisiologia
19.
Physiol Behav ; 194: 324-332, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29913226

RESUMO

Patients suffering anorexia nervosa (AN) become anhedonic, in other words, unable or unwilling to derive normal pleasures and avoid rewarding outcomes, most profoundly in food intake. The neurobiological underpinnings of anhedonia are likely to involve mesolimbic reward circuitry. We propose here that this circuitry and its involvement in AN can be investigated using the activity-based anorexia (ABA) rodent model that recapitulates many of the characteristics of the human condition, most notably rapid weight loss. Preference for sweetened water was used to assay hedonic processing in female Sprague-Dawley rats exposed to the ABA protocol, which involves free access to running wheels paired with time-limited access to food. This protocol uncovered a transient anhedonia in only one quarter of cases; however, exposure to running wheels alone was associated with a rapid aversion to sweetened water (F1.833, 20.17 = 78.29, p < .0001), and time-limited food access alone did not impact preference (F2.205, 24.25 = 0.305, p = .761). High levels of running wheel activity prior to the onset of food restriction increased susceptibility to body weight loss in ABA (F10,196.129 = 2.069, p = .029) and food anticipatory activity predicted subsequent food intake only for rats that were resistant to body weight loss (r = 0.44, p = .001). These data are inconsistent with the hypothesis that anhedonia underscores the precipitous weight loss in ABA, however, they highlight the predictive nature of hyperactivity in susceptibility to the ABA paradigm. These results will help inform the neurobiological framework of ABA and provide insight into the mechanisms of reward relevant to feeding and weight loss.


Assuntos
Anedonia/fisiologia , Anorexia/fisiopatologia , Ingestão de Alimentos/fisiologia , Atividade Motora/fisiologia , Redução de Peso/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Preferências Alimentares , Ratos , Fatores de Tempo
20.
Mol Metab ; 11: 47-58, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510909

RESUMO

OBJECTIVE: The potential for brown adipose tissue (BAT) to be targeted as a therapeutic option to combat obesity has been heightened by the discovery of a brown-like form of inducible "beige" adipose tissue in white fat which has overlapping structural and functional properties to "classical" BAT. The likelihood that both beige and brown fat are recruited functionally by neural mechanisms, taken together with the lack of a detailed understanding of the nature of changes in the nervous system when white adipose tissue (WAT) is transformed to brown, provides the impetus for this study. Here, we aim to identify whether there is a shift in the gene expression profile in neurons directly innervating inguinal white adipose tissue (iWAT) that has undergone "beiging" to a signature that is more similar to neurons projecting to BAT. METHODS: Two groups of rats, one housed at thermoneutrality (27 °C) and the other exposed to cold (8 °C) for 7 days, were killed, and their T13/L1 ganglia, stellate ganglion (T1/T2), or superior cervical ganglion (SCG, C2/3) removed. This approach yielded ganglia containing neurons that innervate either beiged white fat (8 °C for 7 days), inguinal WAT (27 °C for 7 days), BAT (both 27 °C and 8 °C for 7 days) or non-WAT (8 °C for 7 days), the latter included to isolate changes in gene expression that were more aligned with a response to cold exposure than the transformation of white to beige adipocytes. Bioinformatics analyses of RNA sequencing data was performed followed by Ingenuity Pathway Analysis (IPA) to determine differential gene expression and recruitment of biosynthetic pathways. RESULTS: When iWAT is "beiged" there is a significant shift in the gene expression profile of neurons in sympathetic ganglia (T13/L1) innervating this depot toward a gene neurochemical signature that is similar to the stellate ganglion projecting to BAT. Bioinformatics analyses of "beiging" related genes revealed upregulation of genes encoding neuropeptides proopiomelanocortin (POMC) and calcitonin-gene related peptide (CGRP) within ganglionic neurons. Treatment of differentiated 3T3L1 adipocytes with αMSH, one of the products cleaved from POMC, results in an elevation in lipolysis and the beiging of these cells as indicated by changes in gene expression markers of browning (Ucp1 and Ppargc1a). CONCLUSION: These data indicate that, coincident with beiging, there is a shift toward a "brown-like" neurochemical signature of postganglionic neurons projecting to inguinal white fat, an increased expression of POMC, and, consistent with a causative role for this prohormone in beiging, an αMSH-mediated increase in beige gene markers in isolated adipocytes.


Assuntos
Tecido Adiposo Bege/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Pró-Opiomelanocortina/metabolismo , Gânglio Estrelado/metabolismo , Células 3T3 , Tecido Adiposo Bege/inervação , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Masculino , Redes e Vias Metabólicas , Camundongos , Neurônios/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Pró-Opiomelanocortina/genética , Ratos , Ratos Sprague-Dawley , Gânglio Estrelado/citologia , Gânglio Estrelado/fisiologia , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , alfa-MSH/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA