Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242087

RESUMO

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epigenômica , Genômica , Glioblastoma/genética , Glioblastoma/patologia , Análise de Célula Única , Microambiente Tumoral , Heterogeneidade Genética
2.
Cell ; 174(4): 777-779, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096308

RESUMO

Single-cell RNA sequencing provides a new approach to an old problem: how to study cellular diversity in complex biological systems. Three studies-Saunders et al., Zeisel et al., and Davie et al.-deploy this technique on an unprecedented scale to reveal transcriptional patterns that distinguish cells in the nervous systems of mice and flies.


Assuntos
Drosophila , Transcriptoma , Animais , Sequência de Bases , Encéfalo , Camundongos , Análise de Sequência de RNA
3.
Cell ; 165(4): 921-35, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27114033

RESUMO

Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ativação do Complemento , Complemento C1q/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microglia/metabolismo , Envelhecimento/imunologia , Animais , Líquido Cefalorraquidiano , Complemento C1q/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Granulinas , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lisossomos/metabolismo , Redes e Vias Metabólicas , Camundongos , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo , Progranulinas , Sinapses/metabolismo , Tálamo/metabolismo
4.
Cell ; 163(1): 55-67, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26406371

RESUMO

Radial glia, the neural stem cells of the neocortex, are located in two niches: the ventricular zone and outer subventricular zone. Although outer subventricular zone radial glia may generate the majority of human cortical neurons, their molecular features remain elusive. By analyzing gene expression across single cells, we find that outer radial glia preferentially express genes related to extracellular matrix formation, migration, and stemness, including TNC, PTPRZ1, FAM107A, HOPX, and LIFR. Using dynamic imaging, immunostaining, and clonal analysis, we relate these molecular features to distinctive behaviors of outer radial glia, demonstrate the necessity of STAT3 signaling for their cell cycle progression, and establish their extensive proliferative potential. These results suggest that outer radial glia directly support the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby enabling the developmental and evolutionary expansion of the human neocortex.


Assuntos
Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Animais , Ciclo Celular , Humanos , Macaca , Camundongos , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Neuroglia/citologia , Neuroglia/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Análise de Célula Única , Nicho de Células-Tronco
5.
Proc Natl Acad Sci U S A ; 121(23): e2320879121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805290

RESUMO

Our ability to fight pathogens relies on major histocompatibility complex class I (MHC-I) molecules presenting diverse antigens on the surface of diseased cells. The transporter associated with antigen processing (TAP) transports nearly the entire repertoire of antigenic peptides into the endoplasmic reticulum for MHC-I loading. How TAP transports peptides specific for MHC-I is unclear. In this study, we used cryo-EM to determine a series of structures of human TAP, both in the absence and presence of peptides with various sequences and lengths. The structures revealed that peptides of eight or nine residues in length bind in a similarly extended conformation, despite having little sequence overlap. We also identified two peptide-anchoring pockets on either side of the transmembrane cavity, each engaging one end of a peptide with primarily main chain atoms. Occupation of both pockets results in a global conformational change in TAP, bringing the two halves of the transporter closer together to prime it for isomerization and ATP hydrolysis. Shorter peptides are able to bind to each pocket separately but are not long enough to bridge the cavity to bind to both simultaneously. Mutations that disrupt hydrogen bonds with the N and C termini of peptides almost abolish MHC-I surface expression. Our findings reveal that TAP functions as a molecular caliper that selects peptides according to length rather than sequence, providing antigen diversity for MHC-I presentation.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Peptídeos , Humanos , Peptídeos/metabolismo , Peptídeos/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Microscopia Crioeletrônica , Conformação Proteica , Ligação Proteica , Modelos Moleculares
6.
Proc Natl Acad Sci U S A ; 120(11): e2220012120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893260

RESUMO

Adenosine triphosphate-binding cassette (ABC) transporters, such as multidrug resistance protein 1 (MRP1), protect against cellular toxicity by exporting xenobiotic compounds across the plasma membrane. However, constitutive MRP1 function hinders drug delivery across the blood-brain barrier, and MRP1 overexpression in certain cancers leads to acquired multidrug resistance and chemotherapy failure. Small-molecule inhibitors have the potential to block substrate transport, but few show specificity for MRP1. Here we identify a macrocyclic peptide, named CPI1, which inhibits MRP1 with nanomolar potency but shows minimal inhibition of a related multidrug transporter P-glycoprotein. A cryoelectron microscopy (cryo-EM) structure at 3.27 Å resolution shows that CPI1 binds MRP1 at the same location as the physiological substrate leukotriene C4 (LTC4). Residues that interact with both ligands contain large, flexible sidechains that can form a variety of interactions, revealing how MRP1 recognizes multiple structurally unrelated molecules. CPI1 binding prevents the conformational changes necessary for adenosine triphosphate (ATP) hydrolysis and substrate transport, suggesting it may have potential as a therapeutic candidate.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Trifosfato de Adenosina/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Microscopia Crioeletrônica , Leucotrieno C4/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Peptídeos/metabolismo , Peptídeos Cíclicos/farmacologia
7.
J Biol Chem ; 300(2): 105627, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211817

RESUMO

The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.


Assuntos
Ácido Oleico , Peptídeos , Staphylococcus aureus , Microscopia Crioeletrônica , Ácidos Graxos Insaturados , Bicamadas Lipídicas/metabolismo , Fosfatos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
8.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35748297

RESUMO

Oligodendrocytes, the myelinating cells of the central nervous system, possess great potential for disease modeling and cell transplantation-based therapies for leukodystrophies. However, caveats to oligodendrocyte differentiation protocols ( Ehrlich et al., 2017; Wang et al., 2013; Douvaras and Fossati, 2015) from human embryonic stem and induced pluripotent stem cells (iPSCs), which include slow and inefficient differentiation, and tumorigenic potential of contaminating undifferentiated pluripotent cells, are major bottlenecks towards their translational utility. Here, we report the rapid generation of human oligodendrocytes by direct lineage conversion of human dermal fibroblasts (HDFs). We show that the combination of the four transcription factors OLIG2, SOX10, ASCL1 and NKX2.2 is sufficient to convert HDFs to induced oligodendrocyte precursor cells (iOPCs). iOPCs resemble human primary and iPSC-derived OPCs based on morphology and transcriptomic analysis. Importantly, iOPCs can differentiate into mature myelinating oligodendrocytes in vitro and in vivo. Finally, iOPCs derived from patients with Pelizaeus Merzbacher disease, a hypomyelinating leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1) gene, showed increased cell death compared with iOPCs from healthy donors. Thus, human iOPCs generated by direct lineage conversion represent an attractive new source for human cell-based disease models and potentially myelinating cell grafts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Pelizaeus-Merzbacher , Diferenciação Celular/fisiologia , Fibroblastos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Oligodendroglia/metabolismo , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/terapia
9.
Nature ; 555(7696): 377-381, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29513649

RESUMO

New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved.


Assuntos
Hipocampo/citologia , Neurogênese , Neurônios/citologia , Adolescente , Adulto , Idoso , Animais , Animais Recém-Nascidos , Contagem de Células , Proliferação de Células , Criança , Pré-Escolar , Giro Denteado/citologia , Giro Denteado/embriologia , Epilepsia/patologia , Feminino , Desenvolvimento Fetal , Voluntários Saudáveis , Hipocampo/anatomia & histologia , Hipocampo/embriologia , Humanos , Lactente , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais/citologia , Adulto Jovem
10.
Ergonomics ; : 1-11, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742476

RESUMO

Firefighters routinely perform tasks that are reliant on their muscular fitness, which includes muscular strength, power and endurance. Separately, firefighters can present with unique skeletal muscle physiology characteristics due to the strenuous nature of this occupation. This review aims to summarise muscular fitness and physiology as determinants of a firefighter's ability to perform occupation-specific tasks, identify the relevance of both muscular fitness and physiology to a firefighter's risk for sustaining a work-related injury, and address the contributions of muscular fitness and physiology on a firefighter's ability to recover from tasks and their readiness for performing subsequent or future tasks. The presented evidence reveals muscular fitness can determine a firefighter's capacity to perform their job effectively, while also influencing risk for occupational injury. Collectively, this review indicates exercise training emphasising improvements in muscular strength, power, and endurance (i.e. resistance training) should be encouraged in this occupation.


This review addressed muscular fitness and physiology in firefighters. Current evidence suggests firefighter task performance and risk for injury is associated with high levels of muscular fitness. Additionally, firefighters undergo unique changes in muscle morphology and physiology that can negatively affect the ability to safely perform occupation-specific tasks repeatedly.

11.
J Neurosci ; 41(12): 2554-2565, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762407

RESUMO

Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interpreted as evidence for high rates of adult neurogenesis, even at older ages. However, most of these DCX-labeled cells have mature morphology. Furthermore, studies in the adult human DG have not found a germinal region containing dividing progenitor cells. In this Dual Perspectives article, we show that dual antigen retrieval is not required for the detection of DCX in multiple human brain regions of infants or adults. We review prior studies and present new data showing that DCX is not uniquely expressed by newly born neurons: DCX is present in adult amygdala, entorhinal and parahippocampal cortex neurons despite being absent in the neighboring DG. Analysis of available RNA-sequencing datasets supports the view that DG neurogenesis is rare or absent in the adult human brain. To resolve the conflicting interpretations in humans, it is necessary to identify and visualize dividing neuronal precursors or develop new methods to evaluate the age of a neuron at the single-cell level.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Adulto , Diferenciação Celular/fisiologia , Criança , Humanos , Plasticidade Neuronal/fisiologia
12.
Nature ; 529(7587): 537-40, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26789246

RESUMO

Cellular immunity against viral infection and tumour cells depends on antigen presentation by major histocompatibility complex class I (MHC I) molecules. Intracellular antigenic peptides are transported into the endoplasmic reticulum by the transporter associated with antigen processing (TAP) and then loaded onto the nascent MHC I molecules, which are exported to the cell surface and present peptides to the immune system. Cytotoxic T lymphocytes recognize non-self peptides and program the infected or malignant cells for apoptosis. Defects in TAP account for immunodeficiency and tumour development. To escape immune surveillance, some viruses have evolved strategies either to downregulate TAP expression or directly inhibit TAP activity. So far, neither the architecture of TAP nor the mechanism of viral inhibition has been elucidated at the structural level. Here we describe the cryo-electron microscopy structure of human TAP in complex with its inhibitor ICP47, a small protein produced by the herpes simplex virus I. Here we show that the 12 transmembrane helices and 2 cytosolic nucleotide-binding domains of the transporter adopt an inward-facing conformation with the two nucleotide-binding domains separated. The viral inhibitor ICP47 forms a long helical hairpin, which plugs the translocation pathway of TAP from the cytoplasmic side. Association of ICP47 precludes substrate binding and prevents nucleotide-binding domain closure necessary for ATP hydrolysis. This work illustrates a striking example of immune evasion by persistent viruses. By blocking viral antigens from entering the endoplasmic reticulum, herpes simplex virus is hidden from cytotoxic T lymphocytes, which may contribute to establishing a lifelong infection in the host.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Microscopia Crioeletrônica , Herpesvirus Humano 1/imunologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/ultraestrutura , Evasão da Resposta Imune , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Sequência de Aminoácidos , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Retículo Endoplasmático/metabolismo , Herpesvirus Humano 1/química , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/ultraestrutura , Proteínas Imediatamente Precoces/química , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica
13.
Genes Dev ; 27(5): 485-90, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23431031

RESUMO

Proper neurological function in humans requires precise control of levels of the epigenetic regulator methyl CpG-binding protein 2 (MeCP2). MeCP2 protein levels are low in fetal brains, where the predominant MECP2 transcripts have an unusually long 3' untranslated region (UTR). Here, we show that miR-483-5p, an intragenic microRNA of the imprinted IGF2, regulates MeCP2 levels through a human-specific binding site in the MECP2 long 3' UTR. We demonstrate the inverse correlation of miR-483-5p and MeCP2 levels in developing human brains and fibroblasts from Beckwith-Wiedemann syndrome patients. Importantly, expression of miR-483-5p rescues abnormal dendritic spine phenotype of neurons overexpressing human MeCP2. In addition, miR-483-5p modulates the levels of proteins of the MeCP2-interacting corepressor complexes, including HDAC4 and TBL1X. These data provide insight into the role of miR-483-5p in regulating the levels of MeCP2 and interacting proteins during human fetal development.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Sítios de Ligação , Encéfalo/embriologia , Encéfalo/fisiopatologia , Linhagem Celular , Feto/embriologia , Feto/metabolismo , Feto/fisiopatologia , Impressão Genômica , Humanos , Neurônios/patologia , Ligação Proteica
14.
Nature ; 515(7526): 264-8, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25391964

RESUMO

Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRß, the cognate receptor for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD-PDGFRß signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRß in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD-PDGFRß signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains.


Assuntos
Linfocinas/metabolismo , Neocórtex/metabolismo , Neuroglia/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Animais , Ciclo Celular , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Linfocinas/genética , Camundongos , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Neuroglia/citologia , Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais/genética , Transcrição Gênica
15.
Regul Toxicol Pharmacol ; 112: 104588, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32001280

RESUMO

1,2-Propylene glycol and glycerin, principal components of e-liquids, can thermally degrade to form acetaldehyde, acrolein, and formaldehyde when heated in electronic nicotine delivery systems (ENDS). Recently the flavors in e-liquids were suggested to be the major source of these aldehydes. We used the same 10 ENDS devices to test 5 e-liquid formulations (four flavored & one corresponding non-flavored) and measured device mass loss and levels of acetaldehyde, acrolein, and formaldehyde (30 replicate measurements per formulation). Despite finding reasonable variability in measurements of device mass loss, two out of 10 ENDS devices tested produced outlier values for aerosol levels acetaldehyde, acrolein, and formaldehyde. After removing these devices from further analysis, acceptable variability (≤20% RSD) in aerosol levels of acetaldehyde, and formaldehyde were found. The flavored formulations tested resulted in a consistent and selective increase of 150%-200% in acetaldehyde, no increase or decrease in acrolein and depending on the flavor formulation, an increase, a decrease or no change in formaldehyde levels. Comparison of our results to the literature illustrates the need for development of a standardized ENDS testing protocol. Our results further support that device variability must be fully characterized and considered before assessing the impact of e-liquid formulations.


Assuntos
Aldeídos/metabolismo , Aromatizantes/metabolismo , Vaping/metabolismo , Humanos
17.
Nature ; 499(7458): 364-8, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23770568

RESUMO

Efficient carbon utilization is critical to the survival of microorganisms in competitive environments. To optimize energy usage, bacteria have developed an integrated control system to preferentially uptake carbohydrates that support rapid growth. The availability of a preferred carbon source, such as glucose, represses the synthesis and activities of proteins necessary for the transport and metabolism of secondary carbon sources. This regulatory phenomenon is defined as carbon catabolite repression. In enteric bacteria, the key player of carbon catabolite repression is a component of the glucose-specific phosphotransferase system, enzyme IIA (EIIA(Glc)). It is known that unphosphorylated EIIA(Glc) binds to and inhibits a variety of transporters when glucose is available. However, understanding the underlying molecular mechanism has been hindered by the complete absence of structures for any EIIA(Glc)-transporter complexes. Here we present the 3.9 Å crystal structure of Escherichia coli EIIA(Glc) in complex with the maltose transporter, an ATP-binding cassette (ABC) transporter. The structure shows that two EIIA(Glc) molecules bind to the cytoplasmic ATPase subunits, stabilizing the transporter in an inward-facing conformation and preventing the structural rearrangements necessary for ATP hydrolysis. We also show that the half-maximal inhibitory concentrations of the full-length EIIA(Glc) and an amino-terminal truncation mutant differ by 60-fold, consistent with the hypothesis that the amino-terminal region, disordered in the crystal structure, functions as a membrane anchor to increase the effective EIIA(Glc) concentration at the membrane. Together these data suggest a model of how the central regulatory protein EIIA(Glc) allosterically inhibits maltose uptake in E. coli.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Escherichia coli/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Carbono/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo
18.
Cereb Cortex ; 28(6): 1946-1958, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449024

RESUMO

The neocortex of primates, including humans, contains more abundant and diverse inhibitory neurons compared with rodents, but the molecular foundations of these observations are unknown. Through integrative gene coexpression analysis, we determined a consensus transcriptional profile of GABAergic neurons in mid-gestation human neocortex. By comparing this profile to genes expressed in GABAergic neurons purified from neonatal mouse neocortex, we identified conserved and distinct aspects of gene expression in these cells between the species. We show here that the calcium-binding protein secretagogin (SCGN) is robustly expressed by neocortical GABAergic neurons derived from caudal ganglionic eminences (CGE) and lateral ganglionic eminences during human but not mouse brain development. Through electrophysiological and morphometric analyses, we examined the effects of SCGN expression on GABAergic neuron function and form. Forced expression of SCGN in CGE-derived mouse GABAergic neurons significantly increased total neurite length and arbor complexity following transplantation into mouse neocortex, revealing a molecular pathway that contributes to morphological differences in these cells between rodents and primates.


Assuntos
Neurônios GABAérgicos/metabolismo , Neocórtex/embriologia , Neurogênese/fisiologia , Secretagoginas/metabolismo , Animais , Humanos , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/metabolismo , Transcriptoma
19.
Eur J Appl Physiol ; 119(7): 1591-1598, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31079201

RESUMO

PURPOSE: It is reported that a single bout of exercise can lower insulin responses 12-24 h post-exercise; however, the insulin responses to alternate or consecutive bouts of exercise is unknown. Thus, the purpose of this study was to examine the effect of exercise pattern on post-exercise insulin and glucose responses following a glucose challenge. METHODS: Ten male participants (n = 10, mean ± SD, Age 29.5 ± 7.7 years; BMI 25.7 ± 3.0 kg/m2) completed three exercise trials of walking for 60 min at ~ 70% of VO2max. The trials consisted of: three consecutive exercise days (3CON), three alternate exercise days (3ALT), a single bout of exercise (SB), and a no exercise control (R). Twelve to fourteen hours after the last bout of exercise or R, participants completed a 75 g oral glucose tolerance test (OGTT) and blood was collected at 30 min intervals for the measurement of glucose, insulin, and C-peptide. RESULT: Calculated incremental area under the curve (iAUC) for glucose and C-peptide was not different between the four trials. Insulin iAUC decreased 34.9% for 3CON compared to R (p < 0.01). CONCLUSION: Three consecutive days of walking at ~ 70% VO2max improved insulin response following an OGTT compared to no exercise. It is possible, that for healthy males, the effect of a single bout of exercise or exercise bouts separated by more than 24 h may not be enough stimulus to lower insulin responses to a glucose challenge.


Assuntos
Resistência à Insulina , Condicionamento Físico Humano/métodos , Adulto , Glicemia/análise , Humanos , Insulina/sangue , Masculino , Condicionamento Físico Humano/efeitos adversos , Comportamento Sedentário
20.
PLoS Genet ; 12(11): e1006425, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27846226

RESUMO

Sexual dimorphism in common disease is pervasive, including a dramatic male preponderance in autism spectrum disorders (ASDs). Potential genetic explanations include a liability threshold model requiring increased polymorphism risk in females, sex-limited X-chromosome contribution, gene-environment interaction driven by differences in hormonal milieu, risk influenced by genes sex-differentially expressed in early brain development, or contribution from general mechanisms of sexual dimorphism shared with secondary sex characteristics. Utilizing a large single nucleotide polymorphism (SNP) dataset, we identify distinct sex-specific genome-wide significant loci. We investigate genetic hypotheses and find no evidence for increased genetic risk load in females, but evidence for sex heterogeneity on the X chromosome, and contribution of sex-heterogeneous SNPs for anthropometric traits to ASD risk. Thus, our results support pleiotropy between secondary sex characteristic determination and ASDs, providing a biological basis for sex differences in ASDs and implicating non brain-limited mechanisms.


Assuntos
Transtorno do Espectro Autista/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Cromossomos Humanos X/genética , Transtorno do Espectro Autista/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Transtornos Globais do Desenvolvimento Infantil/patologia , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA