Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(6): 2152-2157, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659151

RESUMO

What kind of genetic variation contributes the most to adaptation is a fundamental question in evolutionary biology. By resequencing genomes of 80 individuals, we inferred the origin of genomic variants associated with a complex adaptive syndrome involving multiple quantitative traits, namely, adaptation between high and low altitudes, in the vinous-throated parrotbill (Sinosuthora webbiana) in Taiwan. By comparing these variants with those in the Asian mainland population, we revealed standing variation in 24 noncoding genomic regions to be the predominant genetic source of adaptation. Parrotbills at both high and low altitudes exhibited signatures of recent selection, suggesting that not only the front but also the trailing edges of postglacial expanding populations could be subjected to environmental stresses. This study verifies and quantifies the importance of standing variation in adaptation in a cohort of genes, illustrating that the evolutionary potential of a population depends significantly on its preexisting genetic diversity. These findings provide important context for understanding adaptation and conservation of species in the Anthropocene.


Assuntos
Adaptação Biológica , Evolução Biológica , Variação Genética , Aves Canoras/genética , Animais , Meio Ambiente , Genética Populacional , Genoma , Genômica/métodos , Polimorfismo de Nucleotídeo Único , RNA não Traduzido , Seleção Genética , Taiwan
2.
Environ Monit Assess ; 193(12): 817, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34791534

RESUMO

Forest loss is occurring at alarming rates across the globe. The pine rockland forests of Andros, The Bahamas, likely represent some of the largest stands of Bahamian subspecies of Caribbean pine in the world. Given the unique species that inhabit these pine forests, such as the endemic and critically endangered Bahama Oriole, monitoring habitats on Andros is crucial to inform conservation planning. We developed a 2019 land classification map to assess the status of nine terrestrial habitats on Andros. Our Random Forest classification model predicted habitat classes with high overall accuracy. Caribbean pine was the dominant land class making up roughly one-third of the total terrestrial area. Whereas much of the pine forest area was found as small patches, most were close to other patches of pine suggesting isolation of forest patches is low. We compared our known intact forest areas to recent forest loss identified by the Hansen et al. Global Forest Change product and assessed areas of habitat disturbance in high-resolution imagery. Our results suggest that this global map overpredicted forest loss on Andros. The small degree of true forest loss on Andros was driven mostly by anthropogenic activity. A cross-tabulation of the Hansen forest loss with fire data showed that understory fires were frequently associated with falsely classified deforestation. Given the threats of climate change to this open forest type-intensifying fire regimes, strengthening hurricanes, and sea level rise-monitoring changes in open forest extent is a critical task across the Caribbean region and the world.


Assuntos
Incêndios , Pinus , Bahamas , Ecossistema , Monitoramento Ambiental
3.
Mol Phylogenet Evol ; 131: 48-54, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30367975

RESUMO

Australo-Pacific Petroica robins are known for their striking variability in sexual plumage coloration. Molecular studies in recent years have revised the taxonomy of species and subspecies boundaries across the southwest Pacific and New Guinea. However, these studies have not been able to resolve phylogenetic relationships within Petroica owing to limited sampling of the nuclear genome. Here, we sequence five nuclear introns across all species for which fresh tissue was available. Nuclear loci offer support for major geographic lineages that were first inferred from mtDNA. We find almost no shared nuclear alleles between currently recognized species within the New Zealand and Australian lineages, whereas the Pacific robin radiation has many shared alleles. Multilocus coalescent species trees based on nuclear loci support a sister relationship between the Australian lineage and the Pacific robin radiation-a node that is poorly supported by mtDNA. We also find discordance in support for a sister relationship between the similarly plumaged Rose Robin (P. rosea) and Pink Robin (P. rodinogaster). Our nuclear data complement previous mtDNA studies in suggesting that the phenotypically cryptic eastern and western populations of Australia's Scarlet Robin (P. boodang) are genetically distinct lineages at the early stages of divergence and speciation.


Assuntos
Núcleo Celular/genética , Variação Genética , Íntrons/genética , Aves Canoras/genética , Animais , Austrália , DNA Mitocondrial/genética , Feminino , Masculino , Oceano Pacífico , Filogenia , Filogeografia , Caracteres Sexuais , Especificidade da Espécie
4.
Mol Ecol ; 20(11): 2236-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21739625

RESUMO

In this issue of Molecular Ecology, Brelsford et al. (2011) present strong evidence for a case of hybrid speciation within the yellow-rumped warbler complex. Although homoploid hybrid speciation has now been documented in many animals (Mallet 2007), it seems rare in tetrapods (Mavárez & Linares 2008) and it has barely even been mentioned in birds (Price 2008). Brelsford and colleagues thus present the first detailed molecular evidence suggesting that hybrid speciation can occur in birds. Brelsford et al. (2011) posit that Audubon's warbler (Dendroica auduboni) constitutes a hybrid species originating from the admixture of two distinct parental lineages, represented today by myrtle warbler (D. coronata) and black-fronted warbler (D. nigrifrons). The authors present three major lines of molecular evidence suggesting that this is not simply a case of a hybrid swarm or limited introgression.


Assuntos
Fluxo Gênico/genética , Especiação Genética , Hibridização Genética , Aves Canoras/genética , Animais , Haplótipos/genética , Masculino , Modelos Genéticos , Especificidade da Espécie
5.
Mol Ecol ; 20(11): 2390-402, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21518060

RESUMO

DNA sequence studies frequently reveal evidence of cryptic lineages in morphologically uniform species, many of which turn out to be evolutionarily distinct species. The Common Raven (Corvus corax) includes two deeply divergent mtDNA lineages: one lineage seems restricted to western North America and the other is Holarctic in distribution. These deep clades hint of the possibility of cryptic species in the western United States. We tested this hypothesis in a population consisting of an equal proportion of both mtDNA clades, by quantifying mating patterns and associated fitness consequences with respect to mtDNA. We also tested for morphological, behavioural and ecological correlates of sex and mtDNA clade membership. Mate pairings were random with respect to mtDNA clades, and there were no differences in reproductive success between assortatively and nonassortatively mated pairs. We found no differences in survival or resource use between clades. There were no differences in morphological or behavioural characters between mtDNA clades, except one clade trended towards greater mobility. These results suggest there are no barriers to gene flow between mtDNA clades and argue that the mtDNA clades have remerged in this population, likely due to a lack of ecological or signal differentiation between individuals in each lineage. Hence, in Common Ravens, phylogeographic structure in mtDNA is a reflection of likely past isolation rather than currently differentiated species.


Assuntos
Corvos/genética , Especiação Genética , Endogamia , Filogenia , Envelhecimento , Animais , DNA Mitocondrial/genética , Feminino , Geografia , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Análise de Componente Principal , Tamanho da Amostra , Análise de Sobrevida , Estados Unidos
6.
Mol Ecol ; 20(23): 5042-59, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22060632

RESUMO

Changes in climate and sea level are hypothesized to have promoted the diversification of biota in monsoonal Australia and New Guinea by causing repeated range disjunctions and restricting gene flow between isolated populations. Using a multilocus (one mtDNA locus, five nuclear introns) phylogeographic approach, we test whether populations of the mangrove and rainforest restricted Black Butcherbird (Cracticus quoyi) have diverged across several geographic barriers defined a priori for this region. Phylogeographic structure and estimates of divergence times revealed Plio-Pleistocene divergences and long-term restricted gene flow of populations on either side of four major geographic barriers between and within Australia and New Guinea. Overall, our data are consistent with the hypothesis that mesic-adapted species did not disperse across the open dry woodlands and grasslands that dominated the transient palaeo-landbridges during the Plio-Pleistocene despite the presence of mangrove forests that might have acted as dispersal corridors for mesic-adapted species. Our study offers one of the first multilocus perspectives on the impact of changes in climate and sea level on the population history of widespread species with disjunct ranges in Australia and New Guinea.


Assuntos
Ecossistema , Genética Populacional , Passeriformes/genética , Filogeografia , Animais , Austrália , Teorema de Bayes , DNA Mitocondrial/genética , Feminino , Fluxo Gênico , Haplótipos , Funções Verossimilhança , Masculino , Modelos Genéticos , Nova Guiné , Passeriformes/anatomia & histologia , Filogenia , Isolamento Reprodutivo , Análise de Sequência de DNA
7.
Mol Phylogenet Evol ; 61(2): 460-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21729759

RESUMO

Recent computational advances provide novel opportunities to infer species trees based on multiple independent loci. Thus, single gene trees no longer need suffice as proxies for species phylogenies. Several methods have been developed to deal with the challenges posed by incomplete and stochastic lineage sorting. In this study, we employed four Bayesian methods to infer the phylogeny of a clade of 11 recently diverged oriole species within the genus Icterus. We obtained well-resolved and mostly congruent phylogenies using a set of seven unlinked nuclear intron loci and sampling multiple individuals per species. Most notably, Bayesian concordance analysis generally agreed well with concatenation; the two methods agreed fully on eight of nine nodes. The coalescent-based method ∗BEAST further supported six of these eight nodes. The fourth method used, BEST, failed to converge despite exhaustive efforts to optimize the tree search. Overall, the results obtained by new species tree methods and concatenation generally corroborate our findings from previous analyses and data sets. However, we found striking disagreement between mitochondrial and nuclear DNA involving relationships within the northern oriole group. Our results highlight the danger of reliance on mtDNA alone for phylogenetic inference. We demonstrate that in spite of low variability and incomplete lineage sorting, multiple nuclear loci can produce largely congruent phylogenies based on multiple species tree methods, even for very closely-related species.


Assuntos
Evolução Biológica , Modelos Genéticos , Filogenia , Aves Canoras/genética , Animais , Teorema de Bayes , Núcleo Celular/genética , Biologia Computacional , DNA Mitocondrial/genética , Íntrons , Análise de Sequência de DNA , Aves Canoras/classificação
8.
Mol Phylogenet Evol ; 56(1): 419-27, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20363347

RESUMO

Darwin's vision of a "Tree of Life" showing evolutionary relationships among all extant species seems an increasingly feasible goal, at least for vertebrate animals. However, virtually all published molecular phylogenies for closely related animals are based on a single locus - maternally inherited mitochondrial DNA. New approaches using multiple nuclear loci are needed to test published trees and better resolve the twigs of the entire tree of life. Here we use New World orioles (Icterus) to test an approach based on combined analysis of six independent Z chromosome introns. Combined analysis of multiple introns using traditional phylogenetic methods resolved a well-supported species phylogeny of New World orioles. In fact, all major lineages of orioles and several sub-clades that are well-supported by previously published mtDNA data are also strongly supported by the combined nuclear Z-intron tree. The male-biased Z-intron tree presented here is overwhelmingly congruent with the female-exclusive mtDNA tree. A slow rate of mutation relative to mtDNA resulted in generally poorly resolved gene trees when intron loci were analyzed separately. However, strong phylogenetic signal for all but the most recent divergences emerged once multiple loci were concatenated and analyzed in combination. Although there clearly are conditions under which concatenation analysis of nuclear DNA can be misleading, the congruence between mitochondrial and nuclear estimates of the Icterus phylogeny suggests that concatenation remains a powerful tool for inferring phylogenetic relationships for all but very recent divergences.


Assuntos
Evolução Molecular , Filogenia , Aves Canoras/classificação , Animais , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Feminino , Íntrons/genética , Funções Verossimilhança , Masculino , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNA , Aves Canoras/genética
9.
Bioessays ; 30(9): 854-67, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18693264

RESUMO

Phylogenies are increasingly prominent across all of biology, especially as DNA sequencing makes more and more trees available. However, their utility is compromised by widespread misconceptions about what phylogenies can tell us, and improved "tree thinking" is crucial. The most-serious problem comes from reading trees as ladders from "left to right"--many biologists assume that species-poor lineages that appear "early branching" or "basal" are ancestral--we call this the "primitive lineage fallacy". This mistake causes misleading inferences about changes in individual characteristics and leads to misrepresentation of the evolutionary process. The problem can be rectified by considering that modern phylogenies of present-day species and genes show relationships among evolutionary cousins. Emphasizing that these are extant entities in the 21(st) century will help correct inferences about ancestral characteristics, and will enable us to leave behind 19(th) century notions about the ladder of progress driving evolution.


Assuntos
Evolução Biológica , Especiação Genética , Modelos Genéticos , Filogenia , Animais , Humanos
10.
Proc Biol Sci ; 276(1664): 1971-80, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19324802

RESUMO

Birds in which both sexes produce complex songs are thought to be more common in the tropics than in temperate areas, where typically only males sing. Yet the role of phylogeny in this apparent relationship between female song and latitude has never been examined. Here, we reconstruct evolutionary changes in female song and breeding latitude in the New World blackbirds (Icteridae), a family with both temperate and tropical representatives. We provide strong evidence that members of this group have moved repeatedly from tropical to temperate breeding ranges and, furthermore, that these range shifts were associated with losses of female song more often than expected by chance. This historical perspective suggests that male-biased song production in many temperate species is the result not of sexual selection for complex song in males but of selection against such songs in females. Our results provide new insights into the differences we see today between tropical and temperate songbirds, and suggest that the role of sexual selection in the evolution of bird song might not be as simple as we think.


Assuntos
Cruzamento , Passeriformes/fisiologia , Comportamento Sexual Animal , Vocalização Animal , Migração Animal , Animais , Geografia , Filogenia , Caracteres Sexuais , Clima Tropical
11.
Evolution ; 62(5): 1182-91, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18266986

RESUMO

A widely accepted paradigm is that sedentary Neotropical bird species are a reservoir that gives rise to temperate-tropical migratory species. Recently, an alternative theory has been proposed, that developmental plasticity can allow some individuals within a migratory species to establish a disjunct breeding range through loss of migration, thus facilitating the founding of a new sedentary species. We used mtDNA and two nuclear introns to perform coalescent analyses for two closely related New World oriole species, one a long-distance temperate-tropical migrant and the other a short-distance intratropical migrant. Our results suggest that the short-distance migrant recently diverged from the long-distance migrant via a founder event. In this species pair, the widely accepted paradigm is not supported. These results are consistent with a model of speciation through reduction of migratory distance.


Assuntos
Especiação Genética , Aves Canoras/genética , Alelos , Migração Animal , Animais , DNA Mitocondrial/genética , Efeito Fundador , Fluxo Gênico , Dados de Sequência Molecular , Aves Canoras/classificação , Aves Canoras/fisiologia , Especificidade da Espécie
12.
Evolution ; 62(6): 1469-83, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346221

RESUMO

More than 100 species of birds have Holarctic distributions extending across Eurasia and North America, and many of them likely achieved these distributions by recently colonizing one continent from the other. Mitochondrial DNA (mtDNA) and five nuclear introns were sequenced to test the direction and timing of colonization for a Holarctic duck, the gadwall (Anas strepera). Three lines of evidence suggest gadwalls colonized North America from Eurasia. First, New World (NW) gadwalls had fewer alleles at every locus and 61% of the allelic richness found in Old World (OW) gadwalls. Second, NW gadwalls had lower mtDNA allelic richness than other NW ducks. Third, coalescent analysis suggested that less than 5% of the ancestral population contributed to NW gadwalls at the time of divergence. Gadwalls likely colonized North America during the Late Pleistocene (approximately 81,000 years ago), but the confidence interval on that estimate was large (8500-450,000 years ago). Intercontinental gene flow and selection also likely contributed to genetic diversity in gadwalls. This study illustrates the use of multiple loci and coalescent analyses for critically testing a priori hypotheses regarding dispersal and colonization and provides an independent datapoint supporting an OW to NW bias in the direction of colonization.


Assuntos
Demografia , Patos/genética , Variação Genética , Genética Populacional , Filogenia , Animais , Sequência de Bases , Primers do DNA/genética , DNA Mitocondrial/genética , Europa (Continente) , Geografia , Haplótipos/genética , Modelos Genéticos , Dados de Sequência Molecular , América do Norte , Análise de Sequência de DNA , Especificidade da Espécie
13.
Nat Commun ; 9(1): 906, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500409

RESUMO

Many species, including humans, have emerged via complex reticulate processes involving hybridisation. Under certain circumstances, hybridisation can cause distinct lineages to collapse into a single lineage with an admixed mosaic genome. Most known cases of such 'speciation reversal' or 'lineage fusion' involve recently diverged lineages and anthropogenic perturbation. Here, we show that in western North America, Common Ravens (Corvus corax) have admixed mosaic genomes formed by the fusion of non-sister lineages ('California' and 'Holarctic') that diverged ~1.5 million years ago. Phylogenomic analyses and concordant patterns of geographic structuring in mtDNA, genome-wide SNPs and nuclear introns demonstrate long-term admixture and random interbreeding between the non-sister lineages. In contrast, our genomic data support reproductive isolation between Common Ravens and Chihuahuan Ravens (C. cryptoleucus) despite extensive geographic overlap and a sister relationship between Chihuahuan Ravens and the California lineage. These data suggest that the Common Raven genome was formed by secondary lineage fusion and most likely represents a case of ancient speciation reversal that occurred without anthropogenic causes.


Assuntos
Corvos/genética , Especiação Genética , Genoma , Genômica , Filogenia , Animais , Cruzamento , DNA Mitocondrial/genética , Fluxo Gênico , Geografia , Hibridização Genética , Íntrons/genética , Mosaicismo , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Análise de Sequência de DNA
14.
Evolution ; 61(4): 850-63, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17439617

RESUMO

Both song and color patterns in birds are thought to evolve rapidly and exhibit high levels of homoplasy, yet few previous studies have compared the evolution of these traits systematically using the same taxa. Here we reconstruct the evolution of song in the New World orioles (Icterus) and compare patterns of vocal evolution to previously reconstructed patterns of change in plumage evolution in this clade. Individual vocal characters exhibit high levels of homoplasy, reflected in a low overall consistency index (CI = 0.27) and retention index (RI = 0.35). Levels of lability in song are comparable to those found for oriole plumage patterns using the same taxa (CI = 0.31, RI = 0.63), but are strikingly dissimilar to the conservative patterns of change seen in the songs of oropendolas (Psarocolius, Ocyalus; CI = 0.82, RI = 0.87), a group closely related to the orioles. Oriole song is also similar to oriole plumage in exhibiting repeated convergence in overall patterns, with some distantly related taxa sounding remarkably similar. Thus, both song and plumage in orioles show repeated convergence in individual elements and in overall patterns across the clade, suggesting that both of these character classes are highly labile between taxa yet highly conserved within the genus. Our results provide new insights into the tempo and mode of evolution in sexually selected traits within and across clades.


Assuntos
Plumas/fisiologia , Passeriformes/fisiologia , Filogenia , Vocalização Animal/fisiologia , Animais , Passeriformes/genética , Espectrografia do Som , Especificidade da Espécie
15.
Evolution ; 61(8): 1992-2006, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17683440

RESUMO

Many species have mitochondrial DNA lineages that are phylogenetically intermixed with other species, but studies have rarely tested the cause of such paraphyly. In this study, we tested two hypotheses that could explain mitochondrial paraphyly of Holarctic gadwalls (Anas strepera) with respect to Asian falcated ducks (A. falcata). First, hybridization could have resulted in falcated duck mitochondrial DNA (mtDNA) introgressing into the gadwall gene pool. Second, gadwalls and falcated ducks could have diverged so recently that mtDNA lineages have not sorted to reciprocal monophyly. We used coalescent analyses of three independent loci to distinguish between these two hypotheses. Two lines of evidence support introgression. First, analyses of the three loci combined show that some introgression is necessary to explain current genetic diversity in gadwalls. Second, we generated alternative predictions regarding time since divergence estimated from mtDNA: falcated ducks and gadwalls would have diverged between 65,000 and 700,000 years before present (ybp) under the introgression hypothesis and between 11,000 and 76,000 ybp under the incomplete lineage sorting hypothesis. The two independent nuclear introns indicated that these species diverged between 210,000 and 5,200,000 ybp, which did not overlap the predicted time for incomplete lineage sorting. These analyses also suggested that ancient introgression ( approximately 14,000 ybp) has resulted in the widespread distribution and high frequency of falcated-like mtDNA (5.5% of haplotypes) in North America. This is the first study to use a rigorous quantitative framework to reject incomplete lineage sorting as the cause of mitochondrial paraphyly.


Assuntos
DNA Mitocondrial , Patos/genética , Fluxo Gênico , Especiação Genética , Hibridização Genética , Animais , Regiões Árticas , Calibragem , Patos/classificação , Variação Genética , Geografia , Íntrons , Mutação , Densidade Demográfica , Fatores de Tempo
16.
PLoS One ; 12(10): e0187316, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29084259

RESUMO

Previous studies based on single mitochondrial markers have shown that the common raven (Corvus corax) consists of two highly diverged lineages that are hypothesised to have undergone speciation reversal upon secondary contact. Furthermore, common ravens are paraphyletic with respect to the Chihuahuan raven (C. cryptoleucus) based on mitochondrial DNA (mtDNA). Here we explore the causes of mtDNA paraphyly by sequencing whole mitochondrial genomes of 12 common ravens from across the Northern Hemisphere, in addition to three Chihuahuan ravens and one closely related brown-necked raven (C. ruficollis) using a long-range PCR protocol. Our raven mitogenomes ranged between 16925-16928 bp in length. GC content varied from 43.3% to 43.8% and the 13 protein coding genes, two rRNAs and 22 tRNAs followed a standard avian mitochondrial arrangement. The overall divergence between the two common raven clades was 3% (range 0.3-5.8% in 16 regions including the protein coding genes, rRNAs and the control region). Phylogenies constructed from whole mitogenomes recovered the previously found mitochondrial sister relationship between the common raven California clade and the Chihuahuan raven (overall divergence 1.1%), which strengthens the hypothesis that mtDNA paraphyly in the common raven results from speciation reversal of previously distinct Holarctic and California lineages.


Assuntos
Corvos/genética , Genoma Mitocondrial , Animais , Corvos/classificação , Filogenia , Especificidade da Espécie
17.
Sci Rep ; 7: 43707, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28382942

RESUMO

Sexual dichromatism is a key proxy for the intensity of sexual selection. Studies of dichromatism in birds may, however, have underestimated the intensity and complexity of sexual selection because they used museum specimens alone without taking colour-fading into account or only measured conspicuous visual traits in live animals. We investigated whether the Himalayan black bulbul (Hypsipetes leucocephalus nigerrimus), which is sexually monomorphic to the human eye, exhibits sexual dichromatism distinguishable by a spectrometer. We measured the reflectance (within both the human visual perceptive and the ultraviolet ranges) of two carotenoid-based parts and eight dull and melanin-based parts for each individual live bird or museum skin sampled. According to an avian model of colour discrimination thresholds, we found that males exhibited perceptibly redder beaks, brighter tarsi and darker plumage than did females. This suggests the existence of multiple cryptic sexually dichromatic traits within this species. Moreover, we also observed detectable colour fading in the museum skin specimens compared with the live birds, indicating that sexual dichromatism could be underestimated if analysed using skin specimens alone.


Assuntos
Passeriformes , Caracteres Sexuais , Raios Ultravioleta , Visão Ocular , Animais , Evolução Biológica , Feminino , Humanos , Masculino , Pigmentação , Seleção Genética
18.
Evolution ; 60(8): 1680-91, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17017068

RESUMO

Carotenoid-based colors are thought to play an important signaling role in many animal taxa. However, little is known about evolutionary changes in carotenoid coloration, especially among closely related species. We used a phylogenetic perspective to examine carotenoid color changes within New World orioles (genus Icterus). Oriole color was quantitatively measured using reflectance spectrometry. We found continuous variation from short- to long-wavelength carotenoid colors in extant orioles--perceived by humans as ranging from yellow to scarlet--suggesting that these carotenoid-based colors have evolved as a continuous character. Ancestral state reconstruction suggests that short- and long-wavelength carotenoid colors have evolved independently multiple times, likely from a middle-wavelength ancestor. Although color showed considerable lability, we found a significant amount of phylogenetic signal across the entire genus. This implies that while labile, the colors of closely related taxa tended to resemble each other more than would be expected due to chance. To our knowledge, this is the first study to use quantitative character states derived from reflectance spectra in ancestral state reconstruction. Reflectance spectra provide an unbiased quantitative description of color that allowed us to detect subtle changes among closely related taxa. Using these quantitative methods to score and reconstruct color changes among closely related taxa provides a better understanding of how elaborate animal colors evolve.


Assuntos
Evolução Biológica , Carotenoides/metabolismo , Cor , Passeriformes/fisiologia , Pigmentação/fisiologia , Animais , Carotenoides/genética , Plumas/fisiologia , Humanos , Passeriformes/classificação , Passeriformes/genética , Filogenia , Pigmentação/genética
19.
Ecol Evol ; 6(13): 4307-17, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27386077

RESUMO

As two lineages diverge from one another, mitochondrial DNA should evolve fixed differences more rapidly than nuclear DNA due to its smaller effective population size and faster mutation rate. As a consequence, molecular systematists have focused on the criteria of reciprocal monophyly in mitochondrial DNA for delimiting species boundaries. However, mitochondrial gene trees do not necessarily reflect the evolutionary history of the taxa in question, and even mitochondrial loci are not expected to be reciprocally monophyletic when the speciation event happened very recently. The goal of this study was to examine mitochondrial paraphyly within the Orchard Oriole complex, which is composed of Icterus spurius (Orchard Oriole) and Icterus fuertesi (Fuertes' Oriole). We increased the geographic sampling, added four nuclear loci, and used a range of population genetic and coalescent methods to examine the divergence between the taxa. With increased taxon sampling, we found evidence of clear structure between the taxa for mitochondrial DNA. However, nuclear loci showed little evidence of population structure, indicating a very recent divergence between I. spurius and I. fuertesi. Another goal was to examine the genetic variation within each taxon to look for evidence of a past founder event within the I. fuertesi lineage. Based on the high amounts of genetic variation for all nuclear loci, we found no evidence of such an event - thus, we found no support for the possible founding of I. fuertesi through a change in migratory behavior, followed by peripheral isolates speciation. Our results demonstrate that these two taxa are in the earliest stages of speciation, at a point when they have fixed differences in plumage color that are not reflected in monophyly of the mitochondrial or nuclear DNA markers in this study. This very recent divergence makes them ideal for continued studies of species boundaries and the earliest stages of speciation.

20.
Evolution ; 69(3): 839-47, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25529233

RESUMO

Female bird song and combined vocal duets of mated pairs are both frequently associated with tropical, monogamous, sedentary natural histories. Little is known, however, about what selects for duetting behavior versus female song. Female song likely preceded duet evolution and could drive apparent relationships between duets and these natural histories. We compared the evolution of female song and male-female duets in the New World blackbirds (Icteridae) by investigating patterns of gains and losses of both traits and their relationships with breeding latitude, mating system, nesting pattern, and migratory behavior. We found that duets evolved only in lineages in which female song was likely ancestral. Both female song and duets were correlated with tropical breeding, social monogamy, territorial nesting, and sedentary behavior when all taxa were included; however, correlations between duets and these natural history traits disappeared when comparisons were limited to taxa with female song. Also, likelihood values supported stronger relationships between the natural history traits and female song than between these traits and duets. Our results suggest that the natural histories thought to favor the evolution of duetting may in fact be associated with female song and that additional selection pressures are responsible for the evolution of duets.


Assuntos
Evolução Biológica , Passeriformes/fisiologia , Vocalização Animal , Animais , Cruzamento , Feminino , Funções Verossimilhança , Masculino , Comportamento de Nidação , Filogenia , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA