RESUMO
Cancers are distributed unevenly across the body, but the importance of cell intrinsic factors such as stem cell function in determining organ cancer risk is unknown. Therefore, we used Cre-recombination of conditional lineage tracing, oncogene, and tumor suppressor alleles to define populations of stem and non-stem cells in mouse organs and test their life-long susceptibility to tumorigenesis. We show that tumor incidence is determined by the life-long generative capacity of mutated cells. This relationship held true in the presence of multiple genotypes and regardless of developmental stage, strongly supporting the notion that stem cells dictate organ cancer risk. Using the liver as a model system, we further show that damage-induced activation of stem cell function markedly increases cancer risk. Therefore, we propose that a combination of stem cell mutagenesis and extrinsic factors that enhance the proliferation of these cell populations, creates a "perfect storm" that ultimately determines organ cancer risk. VIDEO ABSTRACT.
Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Oncogenes , Células-Tronco , Alelos , Animais , Genes Supressores de Tumor , Humanos , Integrases , Camundongos , Modelos Biológicos , Mutagênese , Recombinação Genética , Risco , Células-Tronco/metabolismo , Células-Tronco/patologiaRESUMO
Medulloblastoma, a malignant childhood cerebellar tumour, segregates molecularly into biologically distinct subgroups, suggesting that a personalized approach to therapy would be beneficial1. Mouse modelling and cross-species genomics have provided increasing evidence of discrete, subgroup-specific developmental origins2. However, the anatomical and cellular complexity of developing human tissues3-particularly within the rhombic lip germinal zone, which produces all glutamatergic neuronal lineages before internalization into the cerebellar nodulus-makes it difficult to validate previous inferences that were derived from studies in mice. Here we use multi-omics to resolve the origins of medulloblastoma subgroups in the developing human cerebellum. Molecular signatures encoded within a human rhombic-lip-derived lineage trajectory aligned with photoreceptor and unipolar brush cell expression profiles that are maintained in group 3 and group 4 medulloblastoma, suggesting a convergent basis. A systematic diagnostic-imaging review of a prospective institutional cohort localized the putative anatomical origins of group 3 and group 4 tumours to the nodulus. Our results connect the molecular and phenotypic features of clinically challenging medulloblastoma subgroups to their unified beginnings in the rhombic lip in the early stages of human development.
Assuntos
Linhagem da Célula , Neoplasias Cerebelares , Meduloblastoma , Metencéfalo , Animais , Neoplasias Cerebelares/classificação , Neoplasias Cerebelares/embriologia , Neoplasias Cerebelares/patologia , Cerebelo/embriologia , Humanos , Meduloblastoma/classificação , Meduloblastoma/embriologia , Meduloblastoma/patologia , Metencéfalo/embriologia , Camundongos , Neurônios/patologia , Estudos ProspectivosRESUMO
BACKGROUND: Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality. METHODS: To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy. RESULTS: Capmatinib showed superior brain pharmacokinetic properties and greater in vitro and in vivo efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair. CONCLUSIONS: We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing in vivo studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.
Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogênicas c-met , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Glioma/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/terapia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Modelos Animais de Doenças , Criança , Gradação de Tumores , Anilidas/farmacologia , Imidazóis , TriazinasRESUMO
BACKGROUND: Survival data for recurrent pediatric atypical teratoid rhabdoid tumor (ATRT) and its association to molecular groups are extremely limited. METHODS: Single-institution retrospective study of 64 children less than 21 years old with recurrent or treatment-refractory (progressive disease [PD]) ATRT treated at St. Jude Hospital from January 2000 to December 2020. Demographic, clinicopathologic, treatment, molecular grouping (SHH, TYR, and MYC) and germline data were collected. Progression-free survival (PFS2: time from PD to subsequent first progression) and overall survival (OSpostPD: time from PD to death/last follow-up) were estimated by Kaplan-Meier analysis. RESULTS: Median age at and time from initial diagnosis to PD were 2.1 years (range: 0.5-17.9 years) and 5.4 months (range: 0.5-125.6 months), respectively. Only five of 64 children (7.8%) are alive at median follow-up of 10.9 (range: 4.2-18.1) years from PD. The 2/5-year PFS2 and OSpostPD were 3.1% (±1.8%)/1.6% (±1.1%) and 20.3% (±4.8%)/7.3% (±3.5%), respectively. Children with TYR group (n = 10) had a better OSpostPD compared to those with MYC (n = 11) (2-year survival estimates: 60.0% ± 14.3% vs. 18.2% ± 9.5%; p = .019), or those with SHH (n = 21; 4.8% ± 3.3%; p = .014). In univariate analyses, OSpostPD was better with older age at diagnosis (p = .037), female gender (p = .008), and metastatic site of PD compared to local or combined sites of PD (p < .001). Two-year OSpostPD for patients receiving any salvage therapy (n = 39) post PD was 33.3% ± 7.3%. CONCLUSIONS: Children with recurrent/refractory ATRT have dismal outcomes. Older age at diagnosis, female gender, TYR group, and metastatic site of PD were associated with relatively longer survival in our study.
Assuntos
Recidiva Local de Neoplasia , Tumor Rabdoide , Teratoma , Humanos , Tumor Rabdoide/mortalidade , Tumor Rabdoide/terapia , Tumor Rabdoide/patologia , Masculino , Feminino , Criança , Pré-Escolar , Estudos Retrospectivos , Lactente , Adolescente , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/mortalidade , Teratoma/mortalidade , Teratoma/patologia , Teratoma/terapia , Taxa de Sobrevida , Seguimentos , Prognóstico , Recém-Nascido , Biomarcadores Tumorais/genéticaRESUMO
Pediatric cancer treatment, especially for brain tumors, can have profound and complicated late effects. With the survival rates increasing because of improved detection and treatment, a more comprehensive understanding of the impact of current treatments on neurocognitive function and brain structure is critically needed. A frontline medulloblastoma clinical trial (SJMB03) has collected data, including treatment, clinical, neuroimaging, and cognitive variables. Advanced methods for modeling and integrating these data are critically needed to understand the mediation pathway from the treatment through brain structure to neurocognitive outcomes. We propose an integrative Bayesian mediation analysis approach to model jointly a treatment exposure, a high-dimensional structural neuroimaging mediator, and a neurocognitive outcome and to uncover the mediation pathway. The high-dimensional imaging-related coefficients are modeled via a binary Ising-Gaussian Markov random field prior (BI-GMRF), addressing the sparsity, spatial dependency, and smoothness and increasing the power to detect brain regions with mediation effects. Numerical simulations demonstrate the estimation accuracy, power, and robustness. For the SJMB03 study, the BI-GMRF method has identified white matter microstructure that is damaged by cancer-directed treatment and impacts late neurocognitive outcomes. The results provide guidance on improving treatment planning to minimize long-term cognitive sequela for pediatric brain tumor patients.
Assuntos
Neoplasias , Substância Branca , Humanos , Criança , Teorema de Bayes , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias/patologiaRESUMO
Tumors of the central nervous system (CNS) are a leading cause of morbidity and mortality in the pediatric population. Molecular characterization in the last decade has redefined CNS tumor diagnoses and risk stratification; confirmed the unique biology of pediatric tumors as distinct entities from tumors that occur in adulthood; and led to the first novel targeted therapies receiving Food and Drug Administration (FDA) approval for children with CNS tumors. There remain significant challenges to overcome: children with unresectable low-grade glioma may require multiple prolonged courses of therapy affecting quality of life; children with high-grade glioma have a dismal long-term prognosis; children with medulloblastoma may suffer significant short- and long-term morbidity from multimodal cytotoxic therapy, and approaches to improve survival in ependymoma remain elusive. The Children's Oncology Group (COG) is uniquely positioned to conduct the next generation of practice-changing clinical trials through rapid prospective molecular characterization and therapy evaluation in well-defined clinical and molecular groups.
Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias Cerebelares , Glioma , Meduloblastoma , Criança , Humanos , Qualidade de Vida , Neoplasias do Sistema Nervoso Central/terapia , Glioma/patologia , Meduloblastoma/patologia , Neoplasias Encefálicas/patologiaRESUMO
Methylation profiling has radically transformed our understanding of tumors previously called central nervous system primitive neuro-ectodermal tumors (CNS-PNET). While this marks a momentous step toward defining key differences, reclassification has thrown treatment into disarray. To shed light on response to therapy and guide clinical decision-making, we report outcomes and molecular features of children with CNS-PNETs from two multi-center risk-adapted studies (SJMB03 for patients ≥ 3 years; SJYC07 for patients < 3 years) complemented by a non-protocol institutional cohort. Seventy patients who had a histological diagnosis of CNS-PNET or CNS embryonal tumor from one of the new categories that has supplanted CNS-PNET were included. This cohort was molecularly characterized by DNA methylation profiling (n = 70), whole-exome sequencing (n = 53), RNA sequencing (n = 20), and germline sequencing (n = 28). Clinical characteristics were detailed, and treatment was divided into craniospinal irradiation (CSI)-containing (SJMB03 and SJMB03-like) and CSI-sparing therapy (SJYC07 and SJYC07-like). When the cohort was analyzed in its entirety, no differences were observed in the 5-year survival rates even when CSI-containing therapy was compared to CSI-sparing therapy. However, when analyzed by DNA methylation molecular grouping, significant survival differences were observed, and treatment particulars provided suggestions of therapeutic response. Patients with CNS neuroblastoma with FOXR2 activation (CNS-NB-FOXR2) had a 5-year event-free survival (EFS)/overall survival (OS) of 66.7% ± 19.2%/83.3% ± 15.2%, and CIC rearranged sarcoma (CNS-SARC-CIC) had a 5-year EFS/OS both of 57.1% ± 18.7% with most receiving regimens that contained radiation (focal or CSI) and multidrug chemotherapy. Patients with high-grade neuroepithelial tumor with BCOR alteration (HGNET-BCOR) had abysmal responses to upfront chemotherapy-only regimens (5-year EFS = 0%), but survival extended with salvage radiation after progression [5-year OS = 53.6% ± 20.1%]. Patients with embryonal tumor with multilayered rosettes (ETMR) or high-grade glioma/glioblastoma multiforme (HGG/GBM) did not respond favorably to any modality (5-year EFS/OS = 10.7 ± 5.8%/17.9 ± 7.2%, and 10% ± 9.0%/10% ± 9.0%, respectively). As an accompaniment, we have assembled this data onto an interactive website to allow users to probe and query the cases. By reporting on a carefully matched clinical and molecular cohort, we provide the needed insight for future clinical management.
Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioblastoma , Neoplasias Embrionárias de Células Germinativas , Tumores Neuroectodérmicos Primitivos , Neoplasias Encefálicas/terapia , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/terapia , Criança , Fatores de Transcrição Forkhead , Hospitais , Humanos , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/terapiaRESUMO
PURPOSE: To determine if proton therapy reduces doses to cranial organs at risk (OARs) as compared to photon therapy in children with non-germinomatous germ cell tumors (NGGCT) receiving whole ventricular radiotherapy (WVRT). METHODS AND MATERIALS: Dosimetric data for patients with NGGCT prospectively enrolled in stratum 1 of the Children's Oncology Group study ACNS1123 who received 30.6 Gy WVRT were compared. Target segmentation was standardized using a contouring atlas. Doses to cranial OARs were compared between proton and photon treatments. Clinically relevant dose-volume parameters that were analyzed included mean dose and dose to 40% of the OAR volume (D40). RESULTS: Mean and D40 doses to the supratentorial brain, cerebellum, and bilateral temporal, parietal, and frontal lobes were statistically significantly lower amongst proton-treated patients, as compared to photon-treated patients. In a subgroup analysis of patients uniformly treated with a 3-mm planning target volume, patients who received proton therapy continued to have statistically significantly lower doses to brain OARs. CONCLUSIONS: Children treated with proton therapy for WVRT had lower doses to normal brain structures, when compared to those treated with photon therapy. Proton therapy should be considered for patients receiving WVRT for NGGCT.
Assuntos
Neoplasias Embrionárias de Células Germinativas , Terapia com Prótons , Radioterapia de Intensidade Modulada , Criança , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/etiologia , Neoplasias Embrionárias de Células Germinativas/radioterapia , Órgãos em Risco , Fótons/uso terapêutico , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Neoplasias TesticularesRESUMO
This paper discusses the design of clinical trials where the primary endpoint is a recurrent event with the focus on the sample size calculation. For the problem, a few methods have been proposed but most of them assume a multiplicative treatment effect on the rate or mean number of recurrent events. In practice, sometimes the additive treatment effect may be preferred or more appealing because of its intuitive clinical meaning and straightforward interpretation compared to a multiplicative relationship. In this paper, new methods are presented and investigated for the sample size calculation based on the additive rates model for superiority, non-inferiority, and equivalence trials. They allow for flexible baseline rate function, staggered entry, random dropout, and overdispersion in event numbers, and simulation studies show that the proposed methods perform well in a variety of settings. We also illustrate how to use the proposed methods to design a clinical trial based on real data.
Assuntos
Modelos Estatísticos , Simulação por Computador , Humanos , Recidiva , Tamanho da AmostraRESUMO
Recent genomic studies have shed light on the biology and inter-tumoral heterogeneity underlying pineal parenchymal tumors, in particular pineoblastomas (PBs) and pineal parenchymal tumors of intermediate differentiation (PPTIDs). Previous reports, however, had modest sample sizes and lacked the power to integrate molecular and clinical findings. The different proposed molecular group structures also highlighted a need to reach consensus on a robust and relevant classification system. We performed a meta-analysis on 221 patients with molecularly characterized PBs and PPTIDs. DNA methylation profiles were analyzed through complementary bioinformatic approaches and molecular subgrouping was harmonized. Demographic, clinical, and genomic features of patients and samples from these pineal tumor groups were annotated. Four clinically and biologically relevant consensus PB groups were defined: PB-miRNA1 (n = 96), PB-miRNA2 (n = 23), PB-MYC/FOXR2 (n = 34), and PB-RB1 (n = 25). A final molecularly distinct group, designated PPTID (n = 43), comprised histological PPTID and PBs. Genomic and transcriptomic profiling allowed the characterization of oncogenic drivers for individual tumor groups, specifically, alterations in the microRNA processing pathway in PB-miRNA1/2, MYC amplification and FOXR2 overexpression in PB-MYC/FOXR2, RB1 alteration in PB-RB1, and KBTBD4 insertion in PPTID. Age at diagnosis, sex predilection, and metastatic status varied significantly among tumor groups. While patients with PB-miRNA2 and PPTID had superior outcome, survival was intermediate for patients with PB-miRNA1, and dismal for those with PB-MYC/FOXR2 or PB-RB1. Reduced-dose CSI was adequate for patients with average-risk, PB-miRNA1/2 disease. We systematically interrogated the clinical and molecular heterogeneity within pineal parenchymal tumors and proposed a consensus nomenclature for disease groups, laying the groundwork for future studies as well as routine use in tumor diagnostic classification and clinical trial stratification.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glândula Pineal/patologia , Pinealoma/genética , Pinealoma/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Metilação de DNA , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Transcriptoma , Adulto JovemRESUMO
BACKGROUND: Central nervous system (CNS) malignancies are the most common solid tumors among children, and novel therapies are needed to help improve survival. Pomalidomide is an immunomodulatory agent that displays antiangiogenic and cytotoxic activity, making it an appropriate candidate to explore in pediatric CNS tumors. METHODS: A phase 1 first in pediatric trial of pomalidomide was conducted in children with recurrent, progressive, and refractory CNS tumors. The primary objective was to determine the maximum tolerated dose (MTD) and/or recommended phase 2 dose (RP2D) when given orally once daily for 21 consecutive days of a 28-day cycle. Once the MTD was established, 12 additional patients were enrolled on expansion cohorts based on age and steroid use. RESULTS: Twenty-nine children were enrolled and 25 were evaluable for dose-limiting toxicity (DLT). The MTD was 2.6 mg/m2 (dose level 2). Four DLTs were observed in three patients at dose level 3 (3.4 mg/m2 ) includeding grade 3 diarrhea, grade 3 thrombocytopenia, grade 3 lung infection, and grade 4 neutropenia. The most common adverse events were grade 1 and 2 myelosuppression. One patient with an oligodendroglioma had stable disease for nine cycles, and a second patient with an anaplastic pleomorphic xanthoastrocytoma achieved a sustained partial response. Immunologic analyses suggested that pomalidomide triggers immunomodulation. CONCLUSIONS: The MTD of pomalidomide is 2.6 mg/m2 . It was well tolerated, and immune correlates showed a serum immune response. These data led to an industry-sponsored phase 2 trial of pomalidomide monotherapy in children with recurrent brain tumors (NCT03257631).
Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Talidomida/análogos & derivados , Adolescente , Inibidores da Angiogênese/farmacocinética , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Neoplasias do Sistema Nervoso Central/mortalidade , Neoplasias do Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Masculino , Talidomida/farmacocinética , Talidomida/uso terapêutico , Adulto JovemRESUMO
BACKGROUND: Disruption of cell-cycle regulators is a potential therapeutic target for brain tumors in children and adolescents. The aim of this study was to determine the maximum tolerated dose (MTD) and describe toxicities related to palbociclib, a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor in pediatric patients with progressive/refractory brain tumors with intact retinoblastoma protein. METHODS: Palbociclib was administered orally starting at 50 mg/m2 daily for the first 21 days of a 28-day course. Dose escalation was according to the Rolling-6 statistical design in less heavily (stratum I) and heavily pretreated (stratum II) patients, and MTD was determined separately for each group. Pharmacokinetic studies were performed during the first course, and pharmacodynamic studies were conducted to evaluate relationships between drug levels and toxicities. RESULTS: A total of 21 patients were enrolled on stratum I and 14 patients on stratum II. The MTD for both strata was 75 mg/m2 . Palbociclib absorption (mean Tmax between 4.9 and 6.6 h) and elimination (mean half-life between 11.3 and 19.5 h) were assessed. The most common toxicity was myelosuppression. Higher palbociclib exposure was associated with grade 3/4 neutropenia and leukopenia. Dose limiting toxicities included grade 4 neutropenia and grade 3 thrombocytopenia and dehydration. No patients had an objective response to palbociclib therapy. CONCLUSIONS: Palbociclib was safely administered to children and adolescents at a dosage of 75 mg/m2 for 21 consecutive days followed by seven days of rest in both strata. Future studies will establish its optimal utilization in pediatric patients with brain tumors.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Adolescente , Adulto , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Progressão da Doença , Feminino , Humanos , Masculino , Piperazinas/efeitos adversos , Piperazinas/farmacocinética , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Piridinas/efeitos adversos , Piridinas/farmacocinética , Adulto JovemRESUMO
Pineoblastoma is a rare embryonal tumor of childhood that is conventionally treated with high-dose craniospinal irradiation (CSI). Multi-dimensional molecular evaluation of pineoblastoma and associated intertumoral heterogeneity is lacking. Herein, we report outcomes and molecular features of children with pineoblastoma from two multi-center, risk-adapted trials (SJMB03 for patients ≥ 3 years; SJYC07 for patients < 3 years) complemented by a non-protocol institutional cohort. The clinical cohort consisted of 58 patients with histologically diagnosed pineoblastoma (SJMB03 = 30, SJYC07 = 12, non-protocol = 16, including 12 managed with SJMB03-like therapy). The SJMB03 protocol comprised risk-adapted CSI (average-risk = 23.4 Gy, high-risk = 36 Gy) with radiation boost to the primary site and adjuvant chemotherapy. The SJYC07 protocol consisted of induction chemotherapy, consolidation with focal radiation (intermediate-risk) or chemotherapy (high-risk), and metronomic maintenance therapy. The molecular cohort comprised 43 pineal parenchymal tumors profiled by DNA methylation array (n = 43), whole-exome sequencing (n = 26), and RNA-sequencing (n = 16). Respective 5-year progression-free survival rates for patients with average-risk or high-risk disease on SJMB03 or SJMB03-like therapy were 100% and 56.5 ± 10.3% (P = 0.007); respective 2-year progression-free survival rates for those with intermediate-risk or high-risk disease on SJYC07 were 14.3 ± 13.2% and 0% (P = 0.375). Of patients with average-risk disease treated with SJMB03/SJMB03-like therapy, 17/18 survived without progression. DNA-methylation analysis revealed four clinically relevant pineoblastoma subgroups: PB-A, PB-B, PB-B-like, and PB-FOXR2. Pineoblastoma subgroups differed in age at diagnosis, propensity for metastasis, cytogenetics, and clinical outcomes. Alterations in the miRNA-processing pathway genes DICER1, DROSHA, and DGCR8 were recurrent and mutually exclusive in PB-B and PB-B-like subgroups; PB-FOXR2 samples universally overexpressed the FOXR2 proto-oncogene. Our findings suggest superior outcome amongst older children with average-risk pineoblastoma treated with reduced-dose CSI. The identification of biologically and clinically distinct pineoblastoma subgroups warrants consideration of future molecularly-driven treatment protocols for this rare pediatric brain tumor entity.
Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glândula Pineal , Pinealoma/genética , Pinealoma/patologia , Adolescente , Fatores Etários , Neoplasias Encefálicas/terapia , Criança , Pré-Escolar , Estudos de Coortes , Metilação de DNA , Feminino , Humanos , Masculino , Pinealoma/terapia , Proto-Oncogene Mas , Fatores de Risco , Taxa de Sobrevida , Adulto JovemRESUMO
The original version of this article unfortunately contained a typesetting error in Fig 3c. The corrected Fig. 3 is given in the following page.
RESUMO
AIMS: No population pharmacokinetic studies of high-dose methotrexate (HDMTX) have been conducted in infants with brain tumours, which are a vulnerable population. The aim of this study was to evaluate HDMTX disposition in these children to provide a rational basis for MTX dosing. METHODS: Patients received 4 monthly courses of HDMTX (5 g/m2 or 2.5 g/m2 for infants aged ≤31 days) as a 24-h infusion. Serial samples were analysed for MTX by an enzyme immunoassay method. Pharmacokinetic parameters were estimated using nonlinear mixed effects population modelling. Demographics, concomitant medications and genetic polymorphisms were considered as pharmacokinetic covariates while MTX exposure and patient age were considered as covariates for Grade 3 and 4 toxicities. RESULTS: The population pharmacokinetics of HDMTX were estimated in 178 patients (age range 0.02-4.7 years) in 648 courses. The population clearance and volume were 90 mL/min/m2 and 14.4 L/m2 , respectively. Significant covariates on body surface area adjusted MTX clearance included estimated glomerular filtration rate and co-treatment with dexamethasone or vancomycin. No significant association was observed between MTX toxicity and MTX exposure, patient age, leucovorin dosage or duration. MTX clearance in infants ≤31 days at enrolment was 44% lower than in older infants, but their incidence of toxicity was not higher since they also received a lower MTX dosage. CONCLUSIONS: By aggressively following institutional clinical guidelines, HDMTX-related toxicities were low, and using covariates from the population pharmacokinetic model enabled the calculation of a rational dosage for this patient population for future clinical trials.
Assuntos
Neoplasias Encefálicas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Idoso , Antimetabólitos Antineoplásicos/efeitos adversos , Neoplasias Encefálicas/tratamento farmacológico , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Leucovorina , MetotrexatoRESUMO
BACKGROUND: Paediatric low-grade glioma is the most common CNS tumour of childhood. Although overall survival is good, disease often recurs. No single universally accepted treatment exists for these patients; however, standard cytotoxic chemotherapies are generally used. We aimed to assess the activity of selumetinib, a MEK1/2 inhibitor, in these patients. METHODS: The Pediatric Brain Tumor Consortium performed a multicentre, phase 2 study in patients with paediatric low-grade glioma in 11 hospitals in the USA. Patients aged 3-21 years with a Lansky or Karnofsky performance score greater than 60 and the presence of recurrent, refractory, or progressive paediatric low-grade glioma after at least one standard therapy were eligible for inclusion. Patients were assigned to six unique strata according to histology, tumour location, NF1 status, and BRAF aberration status; herein, we report the results of strata 1 and 3. Stratum 1 comprised patients with WHO grade I pilocytic astrocytoma harbouring either one of the two most common BRAF aberrations (KIAA1549-BRAF fusion or the BRAFV600E [Val600Glu] mutation). Stratum 3 comprised patients with any neurofibromatosis type 1 (NF1)-associated paediatric low-grade glioma (WHO grades I and II). Selumetinib was provided as capsules given orally at the recommended phase 2 dose of 25 mg/m2 twice daily in 28-day courses for up to 26 courses. The primary endpoint was the proportion of patients with a stratum-specific objective response (partial response or complete response), as assessed by the local site and sustained for at least 8 weeks. All responses were reviewed centrally. All eligible patients who initiated treatment were evaluable for the activity and toxicity analyses. Although the trial is ongoing in other strata, enrolment and planned follow-up is complete for strata 1 and 3. This trial is registered with ClinicalTrials.gov, number NCT01089101. FINDINGS: Between July 25, 2013, and June 12, 2015, 25 eligible and evaluable patients were accrued to stratum 1, and between Aug 28, 2013, and June 25, 2015, 25 eligible and evaluable patients were accrued to stratum 3. In stratum 1, nine (36% [95% CI 18-57]) of 25 patients achieved a sustained partial response. The median follow-up for the 11 patients who had not had a progression event by Aug 9, 2018, was 36·40 months (IQR 21·72-45·59). In stratum 3, ten (40% [21-61]) of 25 patients achieved a sustained partial response; median follow-up was 48·60 months (IQR 39·14-51·31) for the 17 patients without a progression event by Aug 9, 2018. The most frequent grade 3 or worse adverse events were elevated creatine phosphokinase (five [10%]) and maculopapular rash (five [10%]). No treatment-realted deaths were reported. INTERPRETATION: Selumetinib is active in recurrent, refractory, or progressive pilocytic astrocytoma harbouring common BRAF aberrations and NF1-associated paediatric low-grade glioma. These results show that selumetinib could be an alternative to standard chemotherapy for these subgroups of patients, and have directly led to the development of two Children's Oncology Group phase 3 studies comparing standard chemotherapy to selumetinib in patients with newly diagnosed paediatric low-grade glioma both with and without NF1. FUNDING: National Cancer Institute Cancer Therapy Evaluation Program, the American Lebanese Syrian Associated Charities, and AstraZeneca.
Assuntos
Benzimidazóis/uso terapêutico , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Glioma/tratamento farmacológico , Adolescente , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Progressão da Doença , Feminino , Glioma/genética , Glioma/patologia , Humanos , Masculino , Gradação de Tumores , Neoplasias Primárias Múltiplas/patologia , Neurofibromatose 1/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Adulto JovemRESUMO
Past studies have identified hepatic tumors with mixed hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) characteristics that have a more aggressive behavior and a poorer prognosis than classic HCC. Whether this pathologic heterogeneity is due to a cell of origin of bipotent liver progenitors or the plasticity of cellular constituents comprising these tumors remains debated. In this study, we investigated the potential acquisition of CC-like traits during advanced development of HCC in mice. Primary and rare high-grade HCC developed in a genetic mouse model. A mouse model of highly efficient HCC invasion and metastasis by orthotopic transplantation of liver cancer organoids propagated from primary tumors in the genetic model was further developed. Invasive/metastatic tumors developed in both models closely recapitulated advanced human HCC and displayed a striking acquisition of CC-related pathologic and molecular features, which was absent in the primary HCC tumors. Our study directly demonstrates the pathologic evolution of HCC during advanced tumor development, providing the first evidence that tumors with mixed HCC and CC features, or at least a subset of these tumors, represent a more advanced developmental stage of HCC. Finally, liver cancer organoid-generated high-grade tumors exhibited significantly increased extracellular vesicle secretion, suggesting that identifying tumor-specific extracellular vesicle proteins in plasma may be a promising tool for liver cancer detection.
Assuntos
Carcinoma Hepatocelular/patologia , Colangiocarcinoma/patologia , Neoplasias Hepáticas/patologia , Fígado/patologia , Animais , Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Camundongos , Camundongos Knockout , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Prognóstico , Carga TumoralRESUMO
BACKGROUND AND PURPOSE: Baseline diffusion or apparent diffusion coefficient (ADC) characteristics have been shown to predict outcome related to DIPG, but the predictive value of post-radiation ADC is less well understood. ADC parametric mapping (FDM) was used to measure radiation-related changes in ADC and compared these metrics to baseline ADC in predicting progression-free survival and overall survival using a large multi-center cohort of DIPG patients (Pediatric Brain Tumor Consortium-PBTC). MATERIALS AND METHODS: MR studies at baseline and post-RT in 95 DIPG patients were obtained and serial quantitative ADC parametric maps were generated from diffusion-weighted imaging based on T2/FLAIR and enhancement regions of interest (ROIs). Metrics assessed included total voxels with: increase in ADC (iADC); decrease in ADC (dADC), no change in ADC (nADC), fraction of voxels with increased ADC (fiADC), fraction of voxels with decreased ADC (fdADC), and the ratio of fiADC and fdADC (fDM Ratio). RESULTS: A total of 72 patients were included in the final analysis. Tumors with higher fiADC between baseline and the first RT time point showed a trend toward shorter PFS with a hazard ratio of 6.44 (CI 0.79, 52.79, p = 0.083). In contrast, tumors with higher log mean ADC at baseline had longer PFS, with a hazard ratio of 0.27 (CI 0.09, 0.82, p = 0.022). There was no significant association between fDM derived metrics and overall survival. CONCLUSIONS: Baseline ADC values are a stronger predictor of outcome compared to radiation related ADC changes in pediatric DIPG. We show the feasibility of employing parametric mapping techniques in multi-center studies to quantitate spatially heterogeneous treatment response in pediatric tumors, including DIPG.
Assuntos
Neoplasias do Tronco Encefálico/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Adolescente , Algoritmos , Neoplasias do Tronco Encefálico/mortalidade , Neoplasias do Tronco Encefálico/radioterapia , Criança , Imagem de Difusão por Ressonância Magnética/métodos , Estudos de Viabilidade , Feminino , Glioma/mortalidade , Glioma/radioterapia , Humanos , Masculino , Ponte , Estudos Retrospectivos , Análise Espaço-Temporal , Análise de Sobrevida , Resultado do TratamentoRESUMO
BACKGROUND: Young children with medulloblastoma have a poor overall survival compared with older children, due to use of radiation-sparing therapy in young children. Radiotherapy is omitted or reduced in these young patients to spare them from debilitating long-term side-effects. We aimed to estimate event-free survival and define the molecular characteristics associated with progression-free survival in young patients with medulloblastoma using a risk-stratified treatment strategy designed to defer, reduce, or delay radiation exposure. METHODS: In this multicentre, phase 2 trial, we enrolled children younger than 3 years with newly diagnosed medulloblastoma at six centres in the USA and Australia. Children aged 3-5 years with newly diagnosed, non-metastatic medulloblastoma without any high-risk features were also eligible. Eligible patients were required to start therapy within 31 days from definitive surgery, had a Lansky performance score of at least 30, and did not receive previous radiotherapy or chemotherapy. Patients were stratified postoperatively by clinical and histological criteria into low-risk, intermediate-risk, and high-risk treatment groups. All patients received identical induction chemotherapy (methotrexate, vincristine, cisplatin, and cyclophosphamide), with high-risk patients also receiving an additional five doses of vinblastine. Induction was followed by risk-adapted consolidation therapy: low-risk patients received cyclophosphamide (1500 mg/m2 on day 1), etoposide (100 mg/m2 on days 1 and 2), and carboplatin (area under the curve 5 mg/mL per min on day 2) for two 4-week cycles; intermediate-risk patients received focal radiation therapy (54 Gy with a clinical target volume of 5 mm over 6 weeks) to the tumour bed; and high-risk patients received chemotherapy with targeted intravenous topotecan (area under the curve 120-160 ng-h/mL intravenously on days 1-5) and cyclophosphamide (600 mg/m2 intravenously on days 1-5). After consolidation, all patients received maintenance chemotherapy with cyclophosphamide, topotecan, and erlotinib. The coprimary endpoints were event-free survival and patterns of methylation profiling associated with progression-free survival. Outcome and safety analyses were per protocol (all patients who received at least one dose of induction chemotherapy); biological analyses included all patients with tissue available for methylation profiling. This trial is registered with ClinicalTrials.gov, number NCT00602667, and was closed to accrual on April 19, 2017. FINDINGS: Between Nov 27, 2007, and April 19, 2017, we enrolled 81 patients with histologically confirmed medulloblastoma. Accrual to the low-risk group was suspended after an interim analysis on Dec 2, 2015, when the 1-year event-free survival was estimated to be below the stopping rule boundary. After a median follow-up of 5·5 years (IQR 2·7-7·3), 5-year event-free survival was 31·3% (95% CI 19·3-43·3) for the whole cohort, 55·3% (95% CI 33·3-77·3) in the low-risk cohort (n=23) versus 24·6% (3·6-45·6) in the intermediate-risk cohort (n=32; hazard ratio 2·50, 95% CI 1·19-5·27; p=0·016) and 16·7% (3·4-30·0) in the high-risk cohort (n=26; 3·55, 1·66-7·59; p=0·0011; overall p=0·0021). 5-year progression-free survival by methylation subgroup was 51·1% (95% CI 34·6-67·6) in the sonic hedgehog (SHH) subgroup (n=42), 8·3% (95% CI 0·0-24·0%) in the group 3 subgroup (n=24), and 13·3% (95% CI 0·0-37·6%) in the group 4 subgroup (n=10). Within the SHH subgroup, two distinct methylation subtypes were identified and named iSHH-I and iSHH-II. 5-year progression-free survival was 27·8% (95% CI 9·0-46·6; n=21) for iSHH-I and 75·4% (55·0-95·8; n=21) for iSHH-II. The most common adverse events were grade 3-4 febrile neutropenia (48 patients [59%]), neutropenia (21 [26%]), infection with neutropenia (20 [25%]), leucopenia (15 [19%]), vomiting (15 [19%]), and anorexia (13 [16%]). No treatment-related deaths occurred. INTERPRETATION: The risk-adapted approach did not improve event-free survival in young children with medulloblastoma. However, the methylation subgroup analyses showed that the SHH subgroup had improved progression-free survival compared with the group 3 subgroup. Moreover, within the SHH subgroup, the iSHH-II subtype had improved progression-free survival in the absence of radiation, intraventricular chemotherapy, or high-dose chemotherapy compared with the iSHH-I subtype. These findings support the development of a molecularly driven, risk-adapted, treatment approach in future trials in young children with medulloblastoma. FUNDING: American Lebanese Syrian Associated Charities, St Jude Children's Research Hospital, NCI Cancer Center, Alexander and Margaret Stewart Trust, Sontag Foundation, and American Association for Cancer Research.