Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Infect Immun ; 90(8): e0016022, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862720

RESUMO

Few B cells express CD27, the primary marker for memory B cells, in pediatric schistosomiasis, suggesting B cell malfunction. This study further demonstrates unexpected high expression of CD117 on circulating B cells in children highly exposed to Schistosoma mansoni infectious larvae. CD117 is expressed by immature or lymphoma B cells, but not by mature, circulating cells. We therefore sought to define the significance of CD117 on blood B cells. We found that CD117-positive (CD117+) B cells increased with the intensity of schistosome infection. In addition, CD117 expression was reduced on CD23+ B cells previously shown to correlate with resistance to infection. Stimulation with a panel of cytokines demonstrated that CD117 levels were upregulated in response to a combination of interleukin 4 (IL-4) and stem cell factor (SCF), the ligand for CD117, whereas IL-2 led to a reduction. In addition, stimulation with SCF generally reduced B cell activation levels. Upon further investigation, it was established that multiple circulating cells expressed increased levels of CD117, including monocytes, neutrophils, and eosinophils, and expression levels correlated with that of B cells. Finally, we identified a population of large circulating cells with features of reticulocytes. Overall, our results suggest that hyperexposure to intravascular parasitic worms elicits immature cells from the bone marrow. Levels of SCF were shown to reduce as children began to transition through puberty. The study results pose an explanation for the inability of children to develop significant immunity to infection until after puberty.


Assuntos
Proteínas Proto-Oncogênicas c-kit , Esquistossomose mansoni , Linfócitos B , Medula Óssea/metabolismo , Humanos , Ativação Linfocitária
2.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360770

RESUMO

Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.


Assuntos
Infecções por Bordetella/imunologia , Bordetella bronchiseptica/imunologia , Eosinófilos/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Microbiota/imunologia , Animais , Humanos , Células Th17/imunologia , Células Th2/imunologia
3.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674031

RESUMO

The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a high burden of invasive disease among African infants and HIV-infected adults. It is characterized by genome degradation (loss of coding capacity) and has increased resistance to antibody-dependent complement-mediated killing compared with enterocolitis-causing strains of S Typhimurium. Vaccination is an attractive disease-prevention strategy, and leading candidates focus on the induction of bactericidal antibodies. Antibody-resistant strains arising through further gene deletion could compromise such a strategy. Exposing a saturating transposon insertion mutant library of S Typhimurium to immune serum identified a repertoire of S Typhimurium genes that, when interrupted, result in increased resistance to serum killing. These genes included several involved in bacterial envelope biogenesis, protein translocation, and metabolism. We generated defined mutant derivatives using S Typhimurium SL1344 as the host. Based on their initial levels of enhanced resistance to killing, yfgA and sapA mutants were selected for further characterization. The S Typhimurium yfgA mutant lost the characteristic Salmonella rod-shaped appearance, exhibited increased sensitivity to osmotic and detergent stress, lacked very long lipopolysaccharide, was unable to invade enterocytes, and demonstrated decreased ability to infect mice. In contrast, the S Typhimurium sapA mutants had similar sensitivity to osmotic and detergent stress and lipopolysaccharide profile and an increased ability to infect enterocytes compared with the wild type, but it had no increased ability to cause in vivo infection. These findings indicate that increased resistance to antibody-dependent complement-mediated killing secondary to genetic deletion is not necessarily accompanied by increased virulence and suggest the presence of different mechanisms of antibody resistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/metabolismo , Atividade Bactericida do Sangue , Proteínas do Sistema Complemento/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis , Feminino , Técnicas de Inativação de Genes , Camundongos Endogâmicos C57BL , Mutagênese Insercional , Salmonella typhimurium/fisiologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
4.
Mucosal Immunol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39137883

RESUMO

Intestinal intraepithelial T lymphocytes (IEL) constitutively express high amounts of the cytotoxic proteases Granzymes (Gzm) A and B and are therefore thought to protect the intestinal epithelium against infection by killing infected epithelial cells. However, the role of IEL granzymes in a protective immune response has yet to be demonstrated. We show that GzmA and GzmB are required to protect mice against oral, but not intravenous, infection with Salmonella enterica serovar Typhimurium, consistent with an intestine-specific role. IEL-intrinsic granzymes mediate the protective effects by controlling intracellular bacterial growth and aiding in cell-intrinsic pyroptotic cell death of epithelial cells. Surprisingly, we found that both granzymes play non-redundant roles. GzmB-/- mice carried significantly lower burdens of Salmonella, as predominant GzmA-mediated cell death effectively reduced bacterial translocation across the intestinal barrier. Conversely, in GzmA-/- mice, GzmB-driven apoptosis favored luminal Salmonella growth by providing nutrients, while still reducing translocation across the epithelial barrier. Together, the concerted actions of both GzmA and GzmB balance cell death mechanisms at the intestinal epithelium to provide optimal control that Salmonella cannot subvert.

5.
Microb Cell ; 10(1): 1-17, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36636491

RESUMO

Host membranes are inherently critical for niche homeostasis of vacuolar pathogens. Thus, intracellular bacteria frequently encode the capacity to regulate host lipogenesis as well as to modulate the lipid composition of host membranes. One membrane component that is often subverted by vacuolar bacteria is cholesterol - an abundant lipid that mammalian cells produce de novo at the endoplasmic reticulum (ER) or acquire exogenously from serum-derived lipoprotein carriers. Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. From within a unique ER-derived vacuole L. pneumophila promotes host lipogenesis and experimental evidence indicates that cholesterol production might be one facet of this response. Here we investigated the link between cellular cholesterol and L. pneumophila intracellular replication and discovered that disruption of cholesterol biosynthesis or cholesterol trafficking lowered bacterial replication in infected cells. These growth defects were rescued by addition of exogenous cholesterol. Conversely, bacterial growth within cholesterol-leaden macrophages was enhanced. Importantly, the growth benefit of cholesterol was observed strictly in cellular infections and L. pneumophila growth kinetics in axenic cultures did not change in the presence of cholesterol. Microscopy analyses indicate that cholesterol regulates a step in L. pneumophila intracellular lifecycle that occurs after bacteria begin to replicate within an established intracellular niche. Collectively, we provide experimental evidence that cellular cholesterol promotes L. pneumophila replication within a membrane bound organelle in infected macrophages.

6.
Wellcome Open Res ; 4: 74, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231691

RESUMO

Background: Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in S. Typhimurium ST313. Methods: Six S. Typhimurium ST313 bloodstream isolates, three of which were antibody resistant, were studied. Genomic content (single nucleotide polymorphisms and larger chromosomal modifications) of the strains was determined by Illumina and PACBIO sequencing, and functionally characterized using RNA-seq, transposon directed insertion site sequencing (TraDIS), targeted gene deletion and transfer of selected point mutations in an attempt to identify features associated with serum resistance.   Results: Sequence polymorphisms in genes from strains with atypical serum susceptibility when transferred from strains that were highly resistant or susceptible to a strain that exhibited intermediate susceptibility did not significantly alter serum killing phenotype. No large chromosomal modifications typified serum resistance or susceptibility. Genes required for resistance to serum identified by TraDIS and RNA-seq included those involved in exopolysaccharide synthesis, iron scavenging and metabolism. Most of the down-regulated genes were associated with membrane proteins. Resistant and susceptible strains had distinct transcriptional responses to serum, particularly related to genes responsible for polysaccharide biosynthesis. There was higher upregulation of wca locus genes, involved in the biosynthesis of colanic acid exopolysaccharide, in susceptible strains and increased expression of fepE, a regulator of very long-chain lipopolysaccharide in resistant strains. Conclusion: Clinical isolates of S. Typhimurium ST313 exhibit distinct antibody susceptibility phenotypes that may be associated with changes in gene expression on exposure to serum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA