Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Glia ; 64(5): 780-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26775112

RESUMO

Sleep-wake behavior is altered in response to immune challenge. Although the precise mechanisms that govern sickness-induced changes in sleep are not fully understood, interleukin-1ß (IL-1) is one mediator of these responses. To better understand mechanisms underlying sleep and inflammatory responses to immune challenge, we used two transgenic mouse strains that express IL-1 receptor 1 (IL1R1) only in the central nervous system and selectively on neurons or astrocytes. Electroencephalographic recordings from transgenic and wild-type mice reveal that systemic challenge with lipopolysaccharide (LPS) fragments sleep, suppresses rapid eye movement sleep (REMS), increases non-REMS (NREMS), diminishes NREM delta power, and induces fever in all genotypes. However, the magnitude of REMS suppression is greater in mice expressing IL1R1 on astrocytes compared with mice in which IL1R1 is selectively expressed on neurons. Furthermore, there is a delayed increase in NREM delta power when IL1R1 is expressed on astrocytes. LPS-induced sleep fragmentation is reduced in mice expressing IL1R1 on neurons. Although LPS increases IL-1 and IL-6 in brain of all genotypes, this response is attenuated when IL1R1 is expressed selectively on neurons or on astrocytes. Collectively, these data suggest that in these transgenic mice under the conditions of this study it is neuronal IL1R1 that plays a greater role in LPS-induced suppression of REMS and NREM delta power, whereas astroglial IL1R1 is more important for sleep fragmentation after this immune challenge. Thus, aspects of central responses to LPS are modulated by IL1R1 in a cell type-specific manner.


Assuntos
Astrócitos/metabolismo , Imunomodulação/efeitos dos fármacos , Neurônios/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Sono/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Citocinas/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Eletroencefalografia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/genética , Sono/genética
2.
J Neuroinflammation ; 12: 154, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329692

RESUMO

BACKGROUND: Neuroinflammation is an important secondary mechanism that is a key mediator of the long-term consequences of neuronal injury that occur in traumatic brain injury (TBI). Microglia are highly plastic cells with dual roles in neuronal injury and recovery. Recent studies suggest that the chemokine fractalkine (CX3CL1, FKN) mediates neural/microglial interactions via its sole receptor CX3CR1. CX3CL1/CX3CR1 signaling modulates microglia activation, and depending upon the type and time of injury, either protects or exacerbates neurological diseases. METHODS: In this study, mice deficient in CX3CR1 were subjected to mild controlled cortical impact injury (CCI), a model of TBI. We evaluated the effects of genetic deletion of CX3CR1 on histopathology, cell death/survival, microglia activation, and cognitive function for 30 days post-injury. RESULTS: During the acute post-injury period (24 h-15 days), motor deficits, cell death, and neuronal cell loss were more profound in injured wild-type than in CX3CR1(-/-) mice. In contrast, during the chronic period of 30 days post-TBI, injured CX3CR1(-/-) mice exhibited greater cognitive dysfunction and increased neuronal death than wild-type mice. The protective and deleterious effects of CX3CR1 were associated with changes in microglia phenotypes; during the acute phase CX3CR1(-/-) mice showed a predominant anti-inflammatory M2 microglial response, with increased expression of Ym1, CD206, and TGFß. In contrast, increased M1 phenotypic microglia markers, Marco, and CD68 were predominant at 30 days post-TBI. CONCLUSION: Collectively, these novel data demonstrate a time-dependent role for CX3CL1/CX3CR1 signaling after TBI and suggest that the acute and chronic responses to mild TBI are modulated in part by distinct microglia phenotypes.


Assuntos
Lesões Encefálicas , Encéfalo/patologia , Receptores de Quimiocinas/metabolismo , Análise de Variância , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Receptor 1 de Quimiocina CX3C , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Citometria de Fluxo , Fluoresceínas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Leucócitos Mononucleares/patologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Transtornos Psicomotores/etiologia , Receptores de Quimiocinas/genética , Teste de Desempenho do Rota-Rod , Fatores de Tempo
3.
Brain Behav Immun ; 44: 213-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25449670

RESUMO

Musculoskeletal pain is a widespread health problem in the United States. Back pain, neck pain, and facial pain are three of the most prevalent types of chronic pain, and each is characterized as musculoskeletal in origin. Despite its prevalence, preclinical research investigating musculoskeletal pain is limited. Musculoskeletal sensitization is a preclinical model of muscle pain that produces mechanical hypersensitivity. In a rodent model of musculoskeletal sensitization, mechanical hypersensitivity develops at the hind paws after injection of acidified saline (pH 4.0) into the gastrocnemius muscle. Inflammatory cytokines contribute to pain during a variety of pathologies, and in this study we investigate the role of local, intramuscular cytokines in the development of mechanical hypersensitivity after musculoskeletal sensitization in mice. Local intramuscular concentrations of interleukin-1ß (IL-1), IL-6 and tumor necrosis factor-α (TNF) were quantified following injection of normal (pH 7.2) or acidified saline into the gastrocnemius muscle. A cell-permeable inhibitor was used to determine the impact on mechanical hypersensitivity of inhibiting nuclear translocation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) prior to musculoskeletal sensitization. The role of individual cytokines in mechanical hypersensitivity following musculoskeletal sensitization was assessed using knockout mice lacking components of the IL-1, IL-6 or TNF systems. Collectively, our data demonstrate that acidified saline injection increases intramuscular IL-1 and IL-6, but not TNF; that intramuscular pre-treatment with an NF-κB inhibitor blocks mechanical hypersensitivity; and that genetic manipulation of the IL-1 and IL-6, but not TNF systems, prevents mechanical hypersensitivity following musculoskeletal sensitization. These data establish that actions of IL-1 and IL-6 in local muscle tissue play an acute regulatory role in the development of mechanical hypersensitivity following musculoskeletal sensitization.


Assuntos
Hiperalgesia/metabolismo , Mialgia/metabolismo , Miosite/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Interleucina-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético , Mialgia/induzido quimicamente , Miosite/induzido quimicamente , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia
4.
Brain Behav Immun ; 48: 244-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25849975

RESUMO

Interactions between sleep and immune function are bidirectional. Although the mechanisms that govern these interactions are not fully elucidated, the pro-inflammatory cytokine, interleukin-1ß (IL-1), is a known regulator of sleep and mediator of immune responses. To further clarify the underlying substrates of sleep and immune interactions, we engineered two transgenic mouse lines that express interleukin-1 receptor 1 (IL1R1) only in the central nervous system (CNS) and selectively on neurons (NSE-IL1R1) or astrocytes (GFAP-IL1R1). During spontaneous sleep, compared to wild type (WT) animals, NSE-IL1R1 and GFAP-IL1R1 mice have more rapid eye movement sleep (REMS) that is characterized by reduced theta power in the electroencephalogram (EEG) spectra. The non-REM sleep (NREMS) EEG of each of the IL1R1 transgenic mouse strains also is characterized by enhanced power in the delta frequency band. In response to 6h of sleep deprivation, sleep of both IL1R1 transgenic mouse strains is more consolidated than that of WT animals. Additionally, the NREMS EEG of NSE-IL1R1 mice contains less delta power after sleep deprivation, suggesting astroglial IL1R1 activity may modulate sleep homeostasis. Intracerebroventricular injection of IL-1 fails to alter sleep or brain temperature of NSE-IL1R1 or GFAP-IL1R1 mice. These data suggest that selective IL1R1 expression on neurons or on astrocytes is not sufficient for centrally-administered IL-1 to induce sleep or fever. Lack of sleep and febrile responses to IL-1 in these IL1R1 transgenic mouse strains may be due to their inability to produce IL-6 in brain. Overall, these studies demonstrate, through the use of novel transgenic mice, that IL1R1 on neurons and astrocytes differentially mediates aspects of sleep under physiological conditions and in response to central IL-1 administration.


Assuntos
Astrócitos/fisiologia , Neurônios/fisiologia , Receptores de Interleucina-1/metabolismo , Sono/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Eletroencefalografia , Interleucina-1/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Receptores de Interleucina-1/genética , Sono/efeitos dos fármacos
5.
Brain Behav Immun ; 47: 35-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25449578

RESUMO

Interleukin-1ß (IL1) is involved in sleep regulation and sleep responses induced by influenza virus. The IL1 receptor accessory protein (AcP) and an alternatively spliced isoform of AcP found primarily in neurons, AcPb, form part of the IL1 signaling complex. IL1-induced sleep responses depend on injection time. In rat cortex, both IL1 mRNA and AcPb mRNA peak at Zeitgeber Time (ZT) 0 then decline over the daylight hours. Sleep deprivation enhances cortical IL1 mRNA and AcPb mRNA levels, but not AcP mRNA. We used wild type (WT) and AcPb knockout (KO) mice and performed sleep deprivation between ZT10 and 20 or between ZT22 and 8 based on the time of day expression profiles of AcPb and IL1. We hypothesized that the magnitude of the responses to sleep loss would be strain- and time of day-dependent. In WT mice, NREMS and REMS rebounds occurred regardless of when they were deprived of sleep. In contrast, when AcPbKO mice were sleep deprived from ZT10 to 20 NREMS and REMS rebounds were absent. The AcPbKO mice expressed sleep rebound if sleep loss occurred from ZT22 to 8 although the NREMS responses were not as robust as those that occurred in WT mice. We also challenged mice with intranasal H1N1 influenza virus. WT mice exhibited the expected enhanced sleep responses. In contrast, the AcPbKO mice had less sleep after influenza challenge compared to their own baseline values and compared to WT mice. Body temperature and locomotor activity responses after viral challenge were lower and mortality was higher in AcPbKO than in WT mice. We conclude that neuron-specific AcPb plays a critical role in host defenses and sleep homeostasis.


Assuntos
Homeostase/fisiologia , Vírus da Influenza A Subtipo H1N1 , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Neurônios/metabolismo , Privação do Sono/metabolismo , Sono/fisiologia , Animais , Temperatura Corporal/imunologia , Temperatura Corporal/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/virologia , Homeostase/imunologia , Proteína Acessória do Receptor de Interleucina-1/genética , Camundongos , Camundongos Knockout , Atividade Motora/imunologia , Atividade Motora/fisiologia , Neurônios/virologia , Sono/imunologia , Privação do Sono/virologia
6.
Brain Behav Immun ; 50: 259-265, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26218294

RESUMO

The factors by which aging predisposes to critical illness are varied, complex, and not well understood. Sepsis is considered a quintessential disease of old age because the incidence and mortality of severe sepsis increases in old and the oldest old individuals. Aging is associated with dramatic changes in sleep quality and quantity and sleep increasingly becomes fragmented with age. In healthy adults, sleep disruption induces inflammation. Multiple aspects of aging and of sleep dysregulation interact via neuroimmune mechanisms. Tumor necrosis factor-α (TNF), a cytokine involved in sleep regulation and neuroimmune processes, exerts some of its effects on the CNS by crossing the blood-brain barrier (BBB). In this study we examined the impact of sepsis, sleep fragmentation, and aging on BBB disruption and TNF transport into brain. We used the cecal ligation and puncture (CLP) model of sepsis in young and aged mice that were either undisturbed or had their sleep disrupted. There was a dichotomous effect of sepsis and sleep disruption with age: sepsis disrupted the BBB and increased TNF transport in young mice but not in aged mice, whereas sleep fragmentation disrupted the BBB and increased TNF transport in aged mice, but not in young mice. Combining sleep fragmentation and CLP did not produce a greater effect on either of these BBB parameters than did either of these manipulations alone. These results suggest that the mechanisms by which sleep fragmentation and sepsis alter BBB functions are fundamentally different from one another and that a major change in the organism's responses to those insults occurs with aging.


Assuntos
Envelhecimento , Barreira Hematoencefálica/metabolismo , Sepse/metabolismo , Sono , Fator de Necrose Tumoral alfa/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Nat Rev Neurosci ; 10(3): 199-210, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19209176

RESUMO

Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value.


Assuntos
Encéfalo/imunologia , Febre/imunologia , Sistema Imunitário/fisiologia , Imunidade Inata/imunologia , Sono/fisiologia , Animais , Encéfalo/anatomia & histologia , Citocinas/metabolismo , Humanos , Infecções/imunologia , Serotonina/metabolismo
8.
Brain Behav Immun ; 40: 244-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24594386

RESUMO

Studies in humans suggest that female sex, reduced sleep opportunities and biological stress responsivity increase risk for developing persistent pain conditions. To investigate the relative contribution of these three factors to persistent pain, we employed the Sciatic Inflammatory Neuritis (SIN) model of repeated left sciatic perineurial exposures to zymosan, an inflammatory stimulus, to determine their impact upon the development of persistent mechanical hypersensitivity. Following an initial moderate insult, a very low zymosan dose was infused daily for eight days to model a sub-threshold inflammatory perturbation to which only susceptible animals would manifest or maintain mechanical hypersensitivity. Using Sprague Dawley rats, maintaining wakefulness throughout the first one-half of the 12-h light phase resulted in a bilateral reduction in paw withdrawal thresholds (PWTs); zymosan infusion reduced ipsilateral PWTs in all animals and contralateral PWTs only in females. This sex difference was validated in Fischer 344, Lewis and Sprague Dawley rats, suggesting that females are the more susceptible phenotype for both local and centrally driven responses to repeated low-level inflammatory perturbations. Hypothalamic-pituitary-adrenal (HPA) axis hyporesponsive Lewis rats exhibited the most robust development of mechanical hypersensitivity and HPA axis hyperresponsive Fischer 344 rats matched the Lewis rats' mechanical hypersensitivity throughout the latter four days of the protocol. If HPA axis phenotype does indeed influence these findings, the more balanced responsivity of Sprague Dawley rats would seem to promote resilience in this paradigm. Taken together, these findings are consistent with what is known regarding persistent pain development in humans.


Assuntos
Hiperalgesia/etiologia , Inflamação/complicações , Privação do Sono/complicações , Estresse Psicológico/complicações , Animais , Ansiedade/complicações , Corticosterona/sangue , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Dor/induzido quimicamente , Dor/etiologia , Dor/fisiopatologia , Limiar da Dor , Estimulação Física , Sistema Hipófise-Suprarrenal/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Neuropatia Ciática/complicações , Fatores Sexuais
9.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496655

RESUMO

Human induced pluripotent stem cells (hiPSCs) derived into neurons offer a powerful in vitro model to study cellular processes. One method to characterize functional network properties of these cells is using multielectrode arrays (MEAs). MEAs can measure the electrophysiological activity of cellular cultures for extended periods of time without disruption. Here we used WTC11 hiPSCs with a doxycycline-inducible neurogenin 2 (NGN2) transgene differentiated into neurons co-cultured with primary human astrocytes. We achieved a synchrony index ~0.9 in as little as six-weeks with a mean firing rate of ~13 Hz. Previous reports show that derived 3D brain organoids can take several months to achieve similar strong network burst synchrony. We also used this co-culture to model aspects of sporadic Alzheimer's disease by mimicking blood-brain barrier breakdown using a human serum. Our fully human co-culture achieved strong network burst synchrony in a fraction of the time of previous reports, making it an excellent first pass, high-throughput method for studying network properties and neurodegenerative diseases.

10.
PLoS One ; 19(6): e0303901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917115

RESUMO

Human induced pluripotent stem cells (hiPSCs) derived into neurons offer a powerful in vitro model to study cellular processes. One method to characterize functional network properties of these cells is using multielectrode arrays (MEAs). MEAs can measure the electrophysiological activity of cellular cultures for extended periods of time without disruption. Here we used WTC11 hiPSCs with a doxycycline-inducible neurogenin 2 (NGN2) transgene differentiated into neurons co-cultured with primary human astrocytes. We achieved a synchrony index ∼0.9 in as little as six-weeks with a mean firing rate of ∼13 Hz. Previous reports show that derived 3D brain organoids can take several months to achieve similar strong network burst synchrony. We also used this co-culture to model aspects of blood-brain barrier breakdown by using human serum. Our fully human co-culture achieved strong network burst synchrony in a fraction of the time of previous reports, making it an excellent first pass, high-throughput method for studying network properties and neurodegenerative diseases.


Assuntos
Astrócitos , Diferenciação Celular , Técnicas de Cocultura , Células-Tronco Pluripotentes Induzidas , Neurônios , Humanos , Astrócitos/citologia , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Cocultura/métodos , Neurônios/citologia , Neurônios/metabolismo , Células Cultivadas , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Eletrodos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/citologia
11.
Anal Chem ; 85(22): 10771-9, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24168717

RESUMO

The complexity of biological samples poses a major challenge for reliable compound identification in mass spectrometry (MS). The presence of interfering compounds that cause additional peaks in the spectrum can make interpretation and assignment difficult. To overcome this issue, new approaches are needed to reduce complexity and simplify spectral interpretation. Recently, focused on unknown metabolite identification, we presented a new approach, RANSY (ratio analysis of nuclear magnetic resonance spectroscopy; Anal. Chem. 2011, 83, 7616-7623), which extracts the (1)H signals related to the same metabolite based on peak intensity ratios. On the basis of this concept, we present the ratio analysis of mass spectrometry (RAMSY) method, which facilitates improved compound identification in complex MS spectra. RAMSY works on the principle that, under a given set of experimental conditions, the abundance/intensity ratios between the mass fragments from the same metabolite are relatively constant. Therefore, the quotients of average peak ratios and their standard deviations, generated using a small set of MS spectra from the same ion chromatogram, efficiently allow the statistical recovery of the metabolite peaks and facilitate reliable identification. RAMSY was applied to both gas chromatography/MS and liquid chromatography tandem MS (LC-MS/MS) data to demonstrate its utility. The performance of RAMSY is typically better than the results from correlation methods. RAMSY promises to improve unknown metabolite identification for MS users in metabolomics or other fields.


Assuntos
Biomarcadores/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Plasma/química , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida , Humanos , Ratos , Ratos Sprague-Dawley
12.
Curr Biol ; 33(5): R192-R194, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917943

RESUMO

Vaccine failure is a multifactorial global public health problem. A new meta-analysis underscores the role of sleep history as a factor involved in antibody responses to vaccination and subsequent protection against disease.


Assuntos
Vacinas , Saúde Pública , Vacinação , Metanálise como Assunto
13.
Sleep ; 46(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224457

RESUMO

A workshop titled "Beyond the Symptom: The Biology of Fatigue" was held virtually September 27-28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue. The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them.


Assuntos
Fadiga , Motivação , Humanos , Biologia
14.
Biology (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009868

RESUMO

Microglia play a critical role in the neuroimmune response, but little is known about the role of microglia in sleep following an inflammatory trigger. Nevertheless, decades of research have been predicated on the assumption that an inflammatory trigger increases sleep through microglial activation. We hypothesized that mice (n = 30) with depleted microglia using PLX5622 (PLX) would sleep less following the administration of lipopolysaccharide (LPS) to induce inflammation. Brains were collected and microglial morphology was assessed using quantitative skeletal analyses and physiological parameters were recorded using non-invasive piezoelectric cages. Mice fed PLX diet had a transient increase in sleep that dissipated by week 2. Subsequently, following a first LPS injection (0.4 mg/kg), mice with depleted microglia slept more than mice on the control diet. All mice were returned to normal rodent chow to repopulate microglia in the PLX group (10 days). Nominal differences in sleep existed during the microglia repopulation period. However, following a second LPS injection, mice with repopulated microglia slept similarly to control mice during the dark period but with longer bouts during the light period. Comparing sleep after the first LPS injection to sleep after the second LPS injection, controls exhibited temporal changes in sleep patterns but no change in cumulative minutes slept, whereas cumulative sleep in mice with repopulated microglia decreased during the dark period across all days. Repopulated microglia had a reactive morphology. We conclude that microglia are necessary to regulate sleep after an immune challenge.

15.
Am J Physiol Regul Integr Comp Physiol ; 301(5): R1467-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21900639

RESUMO

Sepsis is a systemic immune response to infection that may result in multiple organ failure and death. Polymicrobial infections remain a serious clinical problem, and in the hospital, sepsis is the number-one noncardiac killer. Although the central nervous system may be one of the first systems affected, relatively little effort has been made to determine the impact of sepsis on the brain. In this study, we used the cecal ligation and puncture (CLP) model to determine the extent to which sepsis alters sleep, the EEG, and brain temperature (Tbr) of rats. Sepsis increases the amount of time rats spend in non-rapid eye movement sleep (NREMS) during the dark period, but not during the light period. Rapid eye movements sleep (REMS) of septic rats is suppressed for about 24 h following CLP surgery, after which REMS increases during dark periods for at least three nights. The EEG is dramatically altered shortly after sepsis induction, as evidenced by reductions in slow-frequency components. Furthermore, sleep is fragmented, indicating that the quality of sleep is diminished. Effects on sleep, the EEG, and Tbr persist for at least 84 h after sepsis induction, the duration of our recording period. Immunohistochemical assays focused on brain stem mechanisms responsible for alterations in REMS, as little information is available concerning infection-induced suppression of this sleep stage. Our immunohistochemical data suggest that REMS suppression after sepsis onset may be mediated, in part, by the brain stem GABAergic system. This study demonstrates for the first time that sleep and EEG patterns are altered during CLP-induced sepsis. These data suggest that the EEG may serve as a biomarker for sepsis onset. These data also contribute to our knowledge of potential mechanisms, whereby infections alter sleep and other central nervous system functions.


Assuntos
Encéfalo/fisiopatologia , Sepse/complicações , Fases do Sono , Transtornos do Sono-Vigília/etiologia , Animais , Comportamento Animal , Temperatura Corporal , Encéfalo/metabolismo , Encéfalo/microbiologia , Ceco/microbiologia , Ceco/cirurgia , Ritmo Circadiano , Modelos Animais de Doenças , Eletroencefalografia , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica , Ligadura , Masculino , Fotoperíodo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Punções , Ratos , Ratos Sprague-Dawley , Sepse/metabolismo , Sepse/microbiologia , Sepse/fisiopatologia , Transtornos do Sono-Vigília/metabolismo , Transtornos do Sono-Vigília/microbiologia , Transtornos do Sono-Vigília/fisiopatologia , Sono REM , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
16.
Brain Behav Immun ; 25(4): 696-705, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21272632

RESUMO

Fatigue, a common symptom of many acute and chronic medical conditions, reduces both quality of life and workplace productivity and can be disabling. However, the pathophysiologic mechanisms that underlie fatigue can be difficult to study in human populations due to the patient heterogeneity, the variety of underlying causes and potential triggering events, and an inability to collect samples that may be essential to elucidation of mechanisms (e.g., brain). Although the etiology of chronic fatigue syndrome (CFS) remains elusive, some studies have implicated viral infections, including Epstein-Barr virus (EBV), a human gammaherpesvirus, as a potential factor in the pathogenesis of CFS. Murine gammaherpesvirus 68 (γHV68) is a mouse pathogen that shares many similarities with human γHVs, including EBV. In this study, we use γHV68-infected C57BL/6J mice as a model system for studying the impact of chronic viral infection on sleep-wake behavior, activity patterns, and body temperature profiles. Our data show that γHV68 alters sleep, activity, and temperature in a manner suggestive of fatigue. In mice infected with the highest dose used in this study (40,000plaque forming units), food intake, body weight, wheel running, body temperature, and sleep were normal until approximately 7days after infection. These parameters were significantly altered during days 7 through 11, returned to baseline levels at day 12 after infection, and remained within the normal range for the remainder of the 30-day period after inoculation. At that time, both infected and uninfected mice were injected with lipopolysaccharide (LPS), and their responses monitored. Uninfected mice given LPS developed a modest and transient febrile response during the initial light phase (hours 12 through 24) after injection. In contrast, infected mice developed changes in core body temperatures that persisted for at least 5days. Infected mice showed an initial hypothermia that lasted for approximately 12h, followed by a modest fever that persisted for several hours. For the remainder of the 5-day recording period, they showed mild hypothermia during the dark phase. Running wheel activity of infected mice was reduced for at least 5days after injection of LPS, but for only 12h in uninfected mice. Collectively, these observations indicate that (1) physiologic and behavioral processes in mice are altered and recover during an early phase of infection, and (2) mice with latent γHV68 infection have an exacerbated response to challenge with LPS. These findings indicate that laboratory mice with γHV68 infections may provide a useful model for the study of fatigue and other physiologic and behavioral perturbations that may occur during acute and chronic infection with gammaherpesviruses.


Assuntos
Síndrome de Fadiga Crônica/etiologia , Fadiga/etiologia , Infecções por Herpesviridae/complicações , Comportamento de Doença/fisiologia , Sono/fisiologia , Latência Viral/imunologia , Animais , Doença Crônica , Modelos Animais de Doenças , Fadiga/imunologia , Gammaherpesvirinae , Infecções por Herpesviridae/imunologia , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sono/imunologia , Vigília/fisiologia
17.
Biol Res Nurs ; 23(2): 171-179, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32677464

RESUMO

BACKGROUND: Young to middle-aged women are more likely than men to be diagnosed with irritable bowel syndrome (IBS). Immune dysfunction may be present in IBS, however, few studies have tested whether hormonal contraceptive use is linked to inflammatory markers. The purpose of this study was to compare cytokine levels between women (ages 18-45) with and without IBS and with and without hormonal contraceptive use and to examine the relationships of cytokine levels to IBS gastrointestinal (GI) and non-GI symptoms within those using and not using hormonal contraceptives. METHODS: Seventy-three women with IBS and 47 healthy control women completed questionnaires (demographics, hormonal contraceptive use) and kept a 28-day symptom diary. Fasting plasma and LPS-stimulated pro-inflammatory (IL-1ß, IL-6, IL-12p40, IL-12p70, IL-8, and TNF-α) and anti-inflammatory (IL-10) cytokines were assayed. RESULTS: No differences were found in plasma or stimulated cytokine levels between IBS and control women. Levels of IL-1ß (p = 0.04) and TNF-α (p = 0.02) were higher among women who did not use hormonal contraceptives compared to women who used hormonal contraceptives. Among women with IBS, significant correlations were found between daily psychological distress and plasma IL-10, IL-12p70, IL-1ß, IL-6, and IL-8 cytokine levels. CONCLUSIONS: These results suggest that hormonal contraceptive use might reduce IL-1ß and TNF-α cytokine levels in women with IBS. The impact of hormonal contraceptive use on innate immune activation among women with IBS requires further research.


Assuntos
Anticoncepcionais/uso terapêutico , Citocinas/sangue , Síndrome do Intestino Irritável/sangue , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
18.
J Biol Chem ; 284(45): 30742-53, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19758985

RESUMO

COX-2, formally known as prostaglandin endoperoxide H synthase-2 (PGHS-2), catalyzes the committed step in prostaglandin biosynthesis. COX-2 is induced during inflammation and is overexpressed in colon cancer. In vitro, an 18-amino acid segment, residues 595-612, immediately upstream of the C-terminal endoplasmic reticulum targeting sequence is required for N-glycosylation of Asn(594), which permits COX-2 protein to enter the endoplasmic reticulum-associated protein degradation system. To determine the importance of this COX-2 degradation pathway in vivo, we engineered a del595-612 PGHS-2 (Delta 18 COX-2) knock-in mouse lacking this 18-amino acid segment. Delta 18 COX-2 knock-in mice do not exhibit the renal or reproductive abnormalities of COX-2 null mice. Delta 18 COX-2 mice do have elevated urinary prostaglandin E(2) metabolite levels and display a more pronounced and prolonged bacterial endotoxin-induced febrile response than wild type (WT) mice. Normal brain tissue, cultured resident peritoneal macrophages, and cultured skin fibroblasts from Delta 18 COX-2 mice overexpress Delta 18 COX-2 relative to WT COX-2 expression in control mice. These results indicate that COX-2 can be degraded via the endoplasmic reticulum-associated protein degradation pathway in vivo. Treatment of cultured cells from WT or Delta 18 COX-2 mice with flurbiprofen, which blocks substrate-dependent degradation, attenuates COX-2 degradation, and treatment of normal mice with ibuprofen increases the levels of COX-2 in brain tissue. Thus, substrate turnover-dependent COX-2 degradation appears to contribute to COX-2 degradation in vivo. Curiously, WT and Delta 18 COX-2 protein levels are similar in kidneys and spleens from WT and Delta 18 COX-2 mice. There must be compensatory mechanisms to maintain constant COX-2 levels in these tissues.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Células Cultivadas , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Sleep ; 33(7): 919-29, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20614852

RESUMO

STUDY OBJECTIVES: REM sleep is suppressed during infection, an effect mimicked by the administration of cytokines such as interleukin-1 (IL-1). In spite of this observation, brain sites and neurochemical systems mediating IL-1-induced suppression of REM sleep have not been identified. Cholinergic neurons in the brainstem laterodorsal tegmental nucleus (LDT) are part of the neuronal circuitry responsible for REM sleep generation. Since IL-1 inhibits acetylcholine synthesis and release, the aim of this study was to test the two different, but related hypotheses. We hypothesized that IL-1 inhibits LDT cholinergic neurons, and that, as a result of this inhibition, IL-1 suppresses REM sleep. DESIGN, MEASUREMENT, AND RESULTS: To test these hypotheses, the electrophysiological activity of putative cholinergic LDT neurons was recorded in a rat brainstem slice preparation. Interleukin-1 significantly inhibited the firing rate of 76% of recorded putative cholinergic LDT neurons and reduced the amplitude of glutamatergic evoked potentials in 60% of recorded neurons. When IL-1 (1 ng) was microinjected into the LDT of freely behaving rats, REM sleep was reduced by about 50% (from 12.7% +/- 1.5% of recording time [after vehicle] to 6.1% +/- 1.4% following IL-1 administration) during post-injection hours 3-4. CONCLUSIONS: Results of this study support the hypothesis that IL-1 can suppress REM sleep by acting at the level of the LDT nucleus. Furthermore this effect may result from the inhibition of evoked glutamatergic responses and of spontaneous firing of putative cholinergic LDT neurons.


Assuntos
Interleucina-1/metabolismo , Neurônios/metabolismo , Sono REM/fisiologia , Tegmento Mesencefálico/metabolismo , Acetilcolina/metabolismo , Adenosina/metabolismo , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Interleucina-1/farmacologia , Masculino , Microinjeções , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sono REM/efeitos dos fármacos , Tegmento Mesencefálico/efeitos dos fármacos , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA