Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Gene Ther ; 30(3-4): 216-221, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34493840

RESUMO

The gene and cell therapy field saw its first approved treatments in Europe in 2012 and the United States in 2017 and is projected to be at least a $10B USD industry by 2025. Despite this success, a massive gap exists between the companies, clinics, and researchers developing these therapeutic approaches, and their availability to the patients who need them. The unacceptable reality is a geographic exclusion of low-and middle-income countries (LMIC) in gene therapy development and ultimately the provision of gene therapies to patients in LMIC. This is particularly relevant for gene therapies to treat human immunodeficiency virus infection and hemoglobinopathies, global health crises impacting tens of millions of people primarily located in LMIC. Bridging this divide will require research, clinical and regulatory infrastructural development, capacity-building, training, an approval pathway and community adoption for success and sustainable affordability. In 2020, the Global Gene Therapy Initiative was formed to tackle the barriers to LMIC inclusion in gene therapy development. This working group includes diverse stakeholders from all sectors and has set a goal of introducing two gene therapy Phase I clinical trials in two LMIC, Uganda and India, by 2024. Here we report on progress to date for this initiative.


Assuntos
Países em Desenvolvimento , Infecções por HIV , Humanos , Estados Unidos
2.
Mol Ther ; 29(9): 2691-2706, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33974997

RESUMO

Chimeric antigen receptor (CAR) T cells typically use a strong constitutive promoter to ensure maximal long-term CAR expression. However, recent evidence suggests that restricting the timing and magnitude of CAR expression is functionally beneficial, whereas constitutive CAR activation may lead to exhaustion and loss of function. We created a self-driving CD19-targeting CAR, which regulates its own function based on the presence of a CD19 antigen engaged by the CAR itself, by placing self-driving CAR19 constructs under transcriptional control of synthetic activator protein 1 (AP1)-nuclear factor κB (NF-κB) or signal transducer and activator of transcription (STAT)5 promoters. CD19 antigen-regulated expression was observed for self-driving AP1-NFκB-CAR19, with CAR19 upregulation within 18 h after exposure to target CD19, and corresponded to the level of tumor burden. Self-driving CAR-T cells showed enhanced tumor-dependent activation, expansion, and low exhaustion in vitro as compared to constitutively expressed EF1α and murine stem cell virus (MSCV) CARs and mediated tumor regression and survival in Raji-bearing NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. Long-term CAR function correlated with upregulated CAR expression within 24 h of exposure to tumor antigen. The self-driving AP1-NFκB-CAR19 circuit was also used to inducibly express dominant-negative transforming growth factor ß receptor II (TGFBRIIdn), which effectively countered the negative effects of TGF-ß on CAR-T activation. Thus, a self-driving CAR approach may offer a new modality to express CAR and auxiliary proteins by enhancing CAR-T functional activity and limiting exhaustion.


Assuntos
Linfoma de Burkitt/terapia , Imunoterapia Adotiva/métodos , NF-kappa B/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição AP-1/genética , Animais , Linfoma de Burkitt/genética , Linfoma de Burkitt/imunologia , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos NOD , Regiões Promotoras Genéticas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Gastroenterology ; 158(8): 2250-2265.e20, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32060001

RESUMO

BACKGROUND AND AIMS: Glypican 3 (GPC3) is an oncofetal antigen involved in Wnt-dependent cell proliferation that is highly expressed in hepatocellular carcinoma (HCC). We investigated whether the functions of chimeric antigen receptors (CARs) that target GPC3 are affected by their antibody-binding properties. METHODS: We collected peripheral blood mononuclear cells from healthy donors and patients with HCC and used them to create CAR T cells, based on the humanized YP7 (hYP7) and HN3 antibodies, which have high affinities for the C-lobe and N-lobe of GPC3, respectively. NOD/SCID/IL-2Rgcnull (NSG) mice were given intraperitoneal injections of luciferase-expressing (Luc) Hep3B or HepG2 cells and after xenograft tumors formed, mice were given injections of saline or untransduced T cells (mock control), or CAR (HN3) T cells or CAR (hYP7) T cells. In other NOD/SCID/IL-2Rgcnull (NSG) mice, HepG2-Luc or Hep3B-Luc cells were injected into liver, and after orthotopic tumors formed, mice were given 1 injection of CAR (hYP7) T cells or CD19 CAR T cells (control). We developed droplet digital polymerase chain reaction and genome sequencing methods to analyze persistent CAR T cells in mice. RESULTS: Injections of CAR (hYP7) T cells eliminated tumors in 66% of mice by week 3, whereas CAR (HN3) T cells did not reduce tumor burden. Mice given CAR (hYP7) T cells remained tumor free after re-challenge with additional Hep3B cells. The CAR T cells induced perforin- and granzyme-mediated apoptosis and reduced levels of active ß-catenin in HCC cells. Mice injected with CAR (hYP7) T cells had persistent expansion of T cells and subsets of polyfunctional CAR T cells via antigen-induced selection. These T cells were observed in the tumor microenvironment and spleen for up to 7 weeks after CAR T-cell administration. Integration sites in pre-infusion CAR (HN3) and CAR (hYP7) T cells were randomly distributed, whereas integration into NUPL1 was detected in 3.9% of CAR (hYP7) T cells 5 weeks after injection into tumor-bearing mice and 18.1% of CAR (hYP7) T cells at week 7. There was no common site of integration in CAR (HN3) or CD19 CAR T cells from tumor-bearing mice. CONCLUSIONS: In mice with xenograft or orthoptic liver tumors, CAR (hYP7) T cells eliminate GPC3-positive HCC cells, possibly by inducing perforin- and granzyme-mediated apoptosis or reducing Wnt signaling in tumor cells. GPC3-targeted CAR T cells might be developed for treatment of patients with HCC.


Assuntos
Carcinoma Hepatocelular/terapia , Glipicanas/metabolismo , Imunoterapia Adotiva , Neoplasias Hepáticas/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/transplante , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glipicanas/genética , Glipicanas/imunologia , Granzimas/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Perforina/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral , Microambiente Tumoral , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Immunol Immunother ; 67(2): 311-325, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29052782

RESUMO

Malignant melanoma incidence has been increasing for over 30 years, and despite promising new therapies, metastatic disease remains difficult to treat. We describe preliminary results from a Phase I clinical trial (NCT01586403) of adoptive cell therapy in which three patients received autologous CD4+ and CD8+ T cells transduced with a lentivirus carrying a tyrosinase-specific TCR and a marker protein, truncated CD34 (CD34t). This unusual MHC Class I-restricted TCR produces functional responses in both CD4+ and CD8+ T cells. Parameters monitored on transduced T cells included activation (CD25, CD69), inhibitory (PD-1, TIM-3, CTLA-4), costimulatory (OX40), and memory (CCR7) markers. For the clinical trial, T cells were activated, transduced, selected for CD34t+ cells, then re-activated, and expanded in IL-2 and IL-15. After lymphodepleting chemotherapy, patients were given transduced T cells and IL-2, and were followed for clinical and biological responses. Transduced T cells were detected in the circulation of three treated patients for the duration of observation (42, 523, and 255 days). Patient 1 tolerated the infusion well but died from progressive disease after 6 weeks. Patient 2 had a partial response by RECIST criteria then progressed. After progressing, Patient 2 was given high-dose IL-2 and subsequently achieved complete remission, coinciding with the development of vitiligo. Patient 3 had a mixed response that did not meet RECIST criteria for a clinical response and developed vitiligo. In two of these three patients, adoptive transfer of tyrosinase-reactive TCR-transduced T cells into metastatic melanoma patients had clinical and/or biological activity without serious adverse events.


Assuntos
Antígenos de Neoplasias/imunologia , Melanoma/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Neoplasias Cutâneas/terapia , Subpopulações de Linfócitos T/transplante , Adulto , Idoso , Humanos , Masculino , Melanoma/imunologia , Melanoma/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Prognóstico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/secundário , Subpopulações de Linfócitos T/imunologia , Transplante Autólogo
7.
Cytotherapy ; 20(3): 394-406, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29287970

RESUMO

BACKGROUND AIMS: Multiple steps are required to produce chimeric antigen receptor (CAR)-T cells, involving subset enrichment or depletion, activation, gene transduction and expansion. Open processing steps that increase risk of contamination and production failure are required. This complex process requires skilled personnel and costly clean-room facilities and infrastructure. Simplified, reproducible CAR-T-cell manufacturing with reduced labor intensity within a closed-system is highly desirable for increased availability for patients. METHODS: The CliniMACS Prodigy with TCT process software and the TS520 tubing set that allows closed-system processing for cell enrichment, transduction, washing and expansion was used. We used MACS-CD4 and CD8-MicroBeads for enrichment, TransAct CD3/CD28 reagent for activation, lentiviral CD8 TM-41BB-CD3 ζ-cfrag vectors expressing scFv for CD19 or CD20/CD19 antigens for transduction, TexMACS medium-3%-HS-IL2 for culture and phosphate-buffered saline/ethylenediaminetetraacetic acid buffer for washing. Processing time was 13 days. RESULTS: Enrichment (N = 7) resulted in CD4/CD8 purity of 98 ± 4.0%, 55 ± 6% recovery and CD3+ T-cell purity of 89 ± 10%. Vectors at multiplicity of infection 5-10 resulted in transduction averaging 37%. An average 30-fold expansion of 108 CD4/CD8-enriched cells resulted in sufficient transduced T cells for clinical use. CAR-T cells were 82-100% CD3+ with a mix of CD4+ and CD8+ cells that primarily expressed an effector-memory or central-memory phenotype. Functional testing demonstrated recognition of B-cells and for the CAR-20/19 T cells, CD19 and CD20 single transfectants were recognized in cytotoxic T lymphocyte and interferon-γ production assays. DISCUSSION: The CliniMACS Prodigy device, tubing set TS520 and TCT software allow CAR-T cells to be manufactured in a closed system at the treatment site without need for clean-room facilities and related infrastructure.


Assuntos
Antígenos CD19/metabolismo , Técnicas Citológicas/instrumentação , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo , Centros Médicos Acadêmicos , Antígenos CD19/genética , Antígenos CD19/imunologia , Antígenos CD20/genética , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Linfócitos B/imunologia , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Técnicas Citológicas/métodos , Humanos , Imunofenotipagem , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Transdução Genética
8.
Mol Ther ; 25(9): 2189-2201, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28676342

RESUMO

We explored the utility of targeting anaplastic lymphoma kinase (ALK), a cell surface receptor overexpressed on pediatric solid tumors, using chimeric antigen receptor (CAR)-based immunotherapy. T cells expressing a CAR incorporating the single-chain variable fragment sequence of the ALK48 mAb linked to a 4-1BB-CD3ζ signaling domain lysed ALK-expressing tumor lines and produced interferon-gamma upon antigen stimulation but had limited anti-tumor efficacy in two xenograft models of human neuroblastoma. Further exploration demonstrated that cytokine production was highly dependent upon ALK target density and that target density of ALK on neuroblastoma cell lines was insufficient for maximal activation of CAR T cells. In addition, ALK CAR T cells demonstrated rapid and complete antigen-induced loss of receptor from the T cell surface via internalization. Using a model that simultaneously modulated antigen density and CAR expression, we demonstrated that CAR functionality is regulated by target antigen and CAR density and that low expression of either contributes to limited anti-tumor efficacy of the ALK CAR. These data suggest that stoichiometric relationships between CAR receptors and target antigens may significantly impact the anti-tumor efficacy of CAR T cells and that manipulation of these parameters could allow precise tuning of CAR T cell activity.


Assuntos
Antígenos de Neoplasias/imunologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão , Linfócitos T/imunologia , Linfócitos T/metabolismo , Quinase do Linfoma Anaplásico , Animais , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Humanos , Imunoterapia Adotiva , Lentivirus/genética , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores de Antígenos de Linfócitos T/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Blood ; 126(5): 629-39, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26041741

RESUMO

Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting the CD19 B cell-associated protein have demonstrated potent activity against relapsed/refractory B-lineage acute lymphoblastic leukemia (B-ALL). Not all patients respond, and CD19-negative relapses have been observed. Overexpression of the thymic stromal lymphopoietin receptor (TSLPR; encoded by CRLF2) occurs in a subset of adults and children with B-ALL and confers a high risk of relapse. Recent data suggest the TSLPR signaling axis is functionally important, suggesting that TSLPR would be an ideal immunotherapeutic target. We constructed short and long CARs targeting TSLPR and tested efficacy against CRLF2-overexpressing B-ALL. Both CARs demonstrated activity in vitro, but only short TSLPR CAR T cells mediated leukemia regression. In vivo activity of the short CAR was also associated with long-term persistence of CAR-expressing T cells. Short TSLPR CAR treatment of mice engrafted with a TSLPR-expressing ALL cell line induced leukemia cytotoxicity with efficacy comparable with that of CD19 CAR T cells. Short TSLPR CAR T cells also eradicated leukemia in 4 xenograft models of human CRLF2-overexpressing ALL. Finally, TSLPR has limited surface expression on normal tissues. TSLPR-targeted CAR T cells thus represent a potent oncoprotein-targeted immunotherapy for high-risk ALL.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Citocinas/antagonistas & inibidores , Linfócitos T/imunologia , Animais , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Lancet ; 385(9967): 517-528, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25319501

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) modified T cells targeting CD19 have shown activity in case series of patients with acute and chronic lymphocytic leukaemia and B-cell lymphomas, but feasibility, toxicity, and response rates of consecutively enrolled patients treated with a consistent regimen and assessed on an intention-to-treat basis have not been reported. We aimed to define feasibility, toxicity, maximum tolerated dose, response rate, and biological correlates of response in children and young adults with refractory B-cell malignancies treated with CD19-CAR T cells. METHODS: This phase 1, dose-escalation trial consecutively enrolled children and young adults (aged 1-30 years) with relapsed or refractory acute lymphoblastic leukaemia or non-Hodgkin lymphoma. Autologous T cells were engineered via an 11-day manufacturing process to express a CD19-CAR incorporating an anti-CD19 single-chain variable fragment plus TCR zeta and CD28 signalling domains. All patients received fludarabine and cyclophosphamide before a single infusion of CD19-CAR T cells. Using a standard 3 + 3 design to establish the maximum tolerated dose, patients received either 1 × 10(6) CAR-transduced T cells per kg (dose 1), 3 × 10(6) CAR-transduced T cells per kg (dose 2), or the entire CAR T-cell product if sufficient numbers of cells to meet the assigned dose were not generated. After the dose-escalation phase, an expansion cohort was treated at the maximum tolerated dose. The trial is registered with ClinicalTrials.gov, number NCT01593696. FINDINGS: Between July 2, 2012, and June 20, 2014, 21 patients (including eight who had previously undergone allogeneic haematopoietic stem-cell transplantation) were enrolled and infused with CD19-CAR T cells. 19 received the prescribed dose of CD19-CAR T cells, whereas the assigned dose concentration could not be generated for two patients (90% feasible). All patients enrolled were assessed for response. The maximum tolerated dose was defined as 1 × 10(6) CD19-CAR T cells per kg. All toxicities were fully reversible, with the most severe being grade 4 cytokine release syndrome that occurred in three (14%) of 21 patients (95% CI 3·0-36·3). The most common non-haematological grade 3 adverse events were fever (nine [43%] of 21 patients), hypokalaemia (nine [43%] of 21 patients), fever and neutropenia (eight [38%] of 21 patients), and cytokine release syndrome (three [14%) of 21 patients). INTERPRETATION: CD19-CAR T cell therapy is feasible, safe, and mediates potent anti-leukaemic activity in children and young adults with chemotherapy-resistant B-precursor acute lymphoblastic leukaemia. All toxicities were reversible and prolonged B-cell aplasia did not occur. FUNDING: National Institutes of Health Intramural funds and St Baldrick's Foundation.


Assuntos
Antígenos CD19 , Terapia Baseada em Transplante de Células e Tecidos , Linfoma não Hodgkin/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T , Linfócitos T/transplante , Adolescente , Adulto , Criança , Pré-Escolar , Quimera , Estudos de Coortes , Estudos de Viabilidade , Feminino , Humanos , Lactente , Masculino , Linfócitos T/imunologia , Resultado do Tratamento , Adulto Jovem
11.
Blood ; 122(7): 1105-13, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23757729

RESUMO

Fibrocytes are hematopoietic stem cell-derived fibroblast precursors that are implicated in chronic inflammation, fibrosis, and wound healing. Myeloid-derived suppressor cells (MDSCs) expand in cancer-bearing hosts and contribute to tumor immune evasion. They are typically described as CD11b⁺HLA-DR⁻ in humans. We report abnormal expansions of CD11b⁺HLA-DR⁺ myeloid cells in peripheral blood mononuclear fractions of subjects with metastatic pediatric sarcomas. Like classical fibrocytes, they display cell surface α smooth muscle actin, collagen I/V, and mediate angiogenesis. However, classical fibrocytes serve as antigen presenters and augment immune reactivity, whereas fibrocytes from cancer subjects suppressed anti-CD3-mediated T-cell proliferation, primarily via indoleamine oxidase (IDO). The degree of fibrocyte expansion observed in individual subjects directly correlated with the frequency of circulating GATA3⁺CD4⁺ cells (R = 0.80) and monocytes from healthy donors cultured with IL-4 differentiated into fibrocytes with the same phenotypic profile and immunosuppressive properties as those observed in patients with cancer. We thus describe a novel subset of cancer-induced myeloid-derived suppressor cells, which bear the phenotypic and functional hallmarks of fibrocytes but mediate immune suppression. These cells are likely expanded in response to Th2 immune deviation and may contribute to tumor progression via both immune evasion and angiogenesis.


Assuntos
Fibroblastos/patologia , Linfócitos/patologia , Células Mieloides/patologia , Rabdomiossarcoma/patologia , Sarcoma de Ewing/secundário , Evasão Tumoral/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Criança , Fibroblastos/imunologia , Citometria de Fluxo , Fator de Transcrição GATA3 , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Interleucina-4/farmacologia , Receptores de Lipopolissacarídeos , Ativação Linfocitária , Linfócitos/imunologia , Monócitos/imunologia , Monócitos/patologia , Células Mieloides/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rabdomiossarcoma/sangue , Rabdomiossarcoma/imunologia , Sarcoma de Ewing/sangue , Sarcoma de Ewing/imunologia , Células Th2
12.
Blood ; 121(7): 1165-74, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23243285

RESUMO

Immune targeting of B-cell malignancies using chimeric antigen receptors (CARs) is a promising new approach, but critical factors impacting CAR efficacy remain unclear. To test the suitability of targeting CD22 on precursor B-cell acute lymphoblastic leukemia (BCP-ALL), lymphoblasts from 111 patients with BCP-ALL were assayed for CD22 expression and all were found to be CD22-positive, with median CD22 expression levels of 3500 sites/cell. Three distinct binding domains targeting CD22 were fused to various TCR signaling domains ± an IgG heavy chain constant domain (CH2CH3) to create a series of vector constructs suitable to delineate optimal CAR configuration. CARs derived from the m971 anti-CD22 mAb, which targets a proximal CD22 epitope demonstrated superior antileukemic activity compared with those incorporating other binding domains, and addition of a 4-1BB signaling domain to CD28.CD3 constructs diminished potency, whereas increasing affinity of the anti-CD22 binding motif, and extending the CD22 binding domain away from the membrane via CH2CH3 had no effect. We conclude that second-generation m971 mAb-derived anti-CD22 CARs are promising novel therapeutics that should be tested in BCP-ALL.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Recombinantes de Fusão/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int J Cancer ; 134(6): 1335-45, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24038106

RESUMO

Current multimodal treatments for patients with neuroblastoma (NBL), including anti-disialoganglioside (GD2) monoclonal antibody (mAb) based immunotherapy, result in a favorable outcome in around only half of the patients with advanced disease. To improve this, novel immunocombinational strategies need to be developed and tested in autologous preclinical NBL models. A genetically well-explored autologous mouse model for NBL is the TH-MYCN model. However, the immunobiology of the TH-MYCN model remains largely unexplored. We developed a mouse model using a transplantable TH-MYCN cell line in syngeneic C57Bl/6 mice and characterized the immunobiology of this model. In this report, we show the relevance and opportunities of this model to study immunotherapy for human NBL. Similar to human NBL cells, syngeneic TH-MYCN-derived 9464D cells endogenously express the tumor antigen GD2 and low levels of MHC Class I. The presence of the adaptive immune system had little or no influence on tumor growth, showing the low immunogenicity of the NBL cells. In contrast, depletion of NK1.1+ cells resulted in enhanced tumor outgrowth in both wild-type and Rag1(-/-) mice, showing an important role for NK cells in the natural anti-NBL immune response. Analysis of the tumor infiltrating leukocytes ex vivo revealed the presence of both tumor associated myeloid cells and T regulatory cells, thus mimicking human NBL tumors. Finally, anti-GD2 mAb mediated NBL therapy resulted in ADCC in vitro and delayed tumor outgrowth in vivo. We conclude that the transplantable TH-MYCN model represents a relevant model for the development of novel immunocombinatorial approaches for NBL patients.


Assuntos
Modelos Animais de Doenças , Gangliosídeos/imunologia , Proteínas de Homeodomínio/fisiologia , Imunoterapia , Neuroblastoma/terapia , Proteínas Proto-Oncogênicas/fisiologia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Transgenes/fisiologia , Células Tumorais Cultivadas
14.
Methods Mol Biol ; 2807: 287-298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743236

RESUMO

The inability of people living with HIV (PLWH) to eradicate human immunodeficiency virus (HIV) infection is due in part to the inadequate HIV-specific cellular immune response. The antiviral function of cytotoxic CD8+ T cells, which are crucial for HIV control, is impaired during chronic viral infection because of viral escape mutations, immune exhaustion, HIV antigen downregulation, inflammation, and apoptosis. In addition, some HIV-infected cells either localize to tissue sanctuaries inaccessible to CD8+ T cells or are intrinsically resistant to CD8+ T cell killing. The novel design of synthetic chimeric antigen receptors (CARs) that enable T cells to target specific antigens has led to the development of potent and effective CAR-T cell therapies. While initial clinical trials using anti-HIV CAR-T cells performed over 20 years ago showed limited anti-HIV effects, the improved CAR-T cell design, which enabled its success in treating cancer, has reinstated CAR-T cell therapy as a strategy for HIV cure with notable progress being made in the recent decade.Effective CAR-T cell therapy against HIV infection requires the generation of anti-HIV CAR-T cells with potent in vivo activity against HIV-infected cells. Preclinical evaluation of anti-HIV efficacy of CAR-T cells and their safety is fundamental for supporting the initiation of subsequent clinical trials in PLWH. For these preclinical studies, we developed a novel humanized mouse model supporting in vivo HIV infection, the development of viremia, and the evaluation of novel HIV therapeutics. Preclinical assessment of anti-HIV CAR-T cells using this mouse model involves a multistep process including peripheral blood mononuclear cells (PBMCs) harvested from human donors, T cell purification, ex vivo T cell activation, transduction with lentiviral vectors encoding an anti-HIV CAR, CAR-T cell expansion and infusion in mice intrasplenically injected with autologous PBMCs followed by the determination of CAR-T cell capacity for HIV suppression. Each of the steps described in the following protocol were optimized in the lab to maximize the quantity and quality of the final anti-HIV CAR-T cell products.


Assuntos
Infecções por HIV , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Animais , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Infecções por HIV/imunologia , Infecções por HIV/terapia , Infecções por HIV/virologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T CD8-Positivos/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Transdução Genética
15.
Sci Transl Med ; 16(746): eadn2401, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718133

RESUMO

The development of new genetic medicines to treat sickle cell disease highlights the need for greater collaboration between researchers and people with lived experiences. Drawing on the adage "Nothing about us, without us," we call for increased investments in community advocacy and engagement.


Assuntos
Anemia Falciforme , Defesa do Paciente , Humanos , Anemia Falciforme/genética , Terapia Genética
16.
Sci Signal ; 17(826): eadd4671, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442200

RESUMO

Cells rely on activity-dependent protein-protein interactions to convey biological signals. For chimeric antigen receptor (CAR) T cells containing a 4-1BB costimulatory domain, receptor engagement is thought to stimulate the formation of protein complexes similar to those stimulated by T cell receptor (TCR)-mediated signaling, but the number and type of protein interaction-mediating binding domains differ between CARs and TCRs. Here, we performed coimmunoprecipitation mass spectrometry analysis of a second-generation, CD19-directed 4-1BB:ζ CAR (referred to as bbζCAR) and identified 128 proteins that increased their coassociation after target engagement. We compared activity-induced TCR and CAR signalosomes by quantitative multiplex coimmunoprecipitation and showed that bbζCAR engagement led to the activation of two modules of protein interactions, one similar to TCR signaling that was more weakly engaged by bbζCAR as compared with the TCR and one composed of TRAF signaling complexes that was not engaged by the TCR. Batch-to-batch and interindividual variations in production of the cytokine IL-2 correlated with differences in the magnitude of protein network activation. Future CAR T cell manufacturing protocols could measure, and eventually control, biological variation by monitoring these signalosome activation markers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Antígenos CD19/genética , Membrana Celular , Receptores de Antígenos de Linfócitos T/genética
17.
Semin Hematol ; 60(1): 20-24, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080706

RESUMO

The landscape of therapeutic options for B cell malignancies has fundamentally changed with regulatory and marketing approval of chimeric antigen receptor (CAR)-engineered T cell products. The cell types used for CAR-T production, the length of time of manufacture, the stimulation matrix, and the nature of the gene vector used to transduce human T cells all are significant variables that require adequate quality control before infusion. Having approved products available to clinicians using a centralized production paradigm has not stopped innovation in investigator-initiated trials. Moreover, the high costs of the commercial products have been a significant wake-up call to those concerned about rising costs in health care, and the ability of developing nations, and nations with managed care systems to support these costs. Place-of-care manufacturing is a clear alternative to the approved products created in a centralized manufacturing approach. It is supported by continued technological innovation and the willingness of clinicians to develop new ways to decrease costs and make these curative therapies equitably available.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Linfócitos T
18.
Bone Marrow Transplant ; 58(2): 160-167, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36347999

RESUMO

Chimeric Antigen Receptor (CAR) T cell therapy is an accepted standard of care for relapsed/refractory B cell malignancies. However, the high cost of existing industry-driven centralized production makes this therapy unaffordable in low and middle-income countries. Decentralized or point of care manufacturing has the potential to overcome some of these challenges. Here we demonstrate a decentralized manufacturing process for anti-CD19-CAR-T cells using a fully automated closed system (Miltenyi CliniMACS Prodigy®) is feasible in a developing country setting. Validation run data, as part of a pre-clinical trial safety evaluation, demonstrates the successful and robust manufacturing of anti-CD19 CAR-T cells with T cell expansion of 25 to 47-fold. The median transduction efficiency was 48.8%, with a median viability of 98% and fulfillment of all standard release criteria assays for clinical application. Evaluation of production costs in an academic, not for profit setting in India provide a benchmark for low and middle-income pricing which could greatly increase access to this therapy. Based on our analysis, the cost per product would be approximately $35,107 US dollars. Our data highlights the safety, efficacy, and reproducibility of the process for use in planned future clinical trials.


Assuntos
Imunoterapia Adotiva , Neoplasias , Humanos , Reprodutibilidade dos Testes , Linfócitos T , Custos e Análise de Custo , Antígenos CD19
19.
Blood Adv ; 7(15): 4218-4232, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36607839

RESUMO

CD19 chimeric antigen receptor T-cell therapy (CD19-CAR) has changed the treatment landscape and outcomes for patients with pre-B-cell acute lymphoblastic leukemia (B-ALL). Unfortunately, primary nonresponse (PNR), sustained CD19+ disease, and concurrent expansion of CD19-CAR occur in 20% of the patients and is associated with adverse outcomes. Although some failures may be attributable to CD19 loss, mechanisms of CD19-independent, leukemia-intrinsic resistance to CD19-CAR remain poorly understood. We hypothesize that PNR leukemias are distinct compared with primary sensitive (PS) leukemias and that these differences are present before treatment. We used a multiomic approach to investigate this in 14 patients (7 with PNR and 7 with PS) enrolled in the PLAT-02 trial at Seattle Children's Hospital. Long-read PacBio sequencing helped identify 1 PNR in which 47% of CD19 transcripts had exon 2 skipping, but other samples lacked CD19 transcript abnormalities. Epigenetic profiling discovered DNA hypermethylation at genes targeted by polycomb repressive complex 2 (PRC2) in embryonic stem cells. Similarly, assays of transposase-accessible chromatin-sequencing revealed reduced accessibility at these PRC2 target genes, with a gain in accessibility of regions characteristic of hematopoietic stem cells and multilineage progenitors in PNR. Single-cell RNA sequencing and cytometry by time of flight analyses identified leukemic subpopulations expressing multilineage markers and decreased antigen presentation in PNR. We thus describe the association of a stem cell epigenome with primary resistance to CD19-CAR therapy. Future trials incorporating these biomarkers, with the addition of multispecific CAR T cells targeting against leukemic stem cell or myeloid antigens, and/or combined epigenetic therapy to disrupt this distinct stem cell epigenome may improve outcomes of patients with B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos T , Criança , Humanos , Epigenoma , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Antígenos CD19 , Células-Tronco Hematopoéticas
20.
Cell Rep Med ; 4(10): 101212, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37774704

RESUMO

Pediatric patients with relapsed or refractory rhabdomyosarcoma (RMS) have dismal cure rates, and effective therapy is urgently needed. The oncogenic receptor tyrosine kinase fibroblast growth factor receptor 4 (FGFR4) is highly expressed in RMS and lowly expressed in healthy tissues. Here, we describe a second-generation FGFR4-targeting chimeric antigen receptor (CAR), based on an anti-human FGFR4-specific murine monoclonal antibody 3A11, as an adoptive T cell treatment for RMS. The 3A11 CAR T cells induced robust cytokine production and cytotoxicity against RMS cell lines in vitro. In contrast, a panel of healthy human primary cells failed to activate 3A11 CAR T cells, confirming the selectivity of 3A11 CAR T cells against tumors with high FGFR4 expression. Finally, we demonstrate that 3A11 CAR T cells are persistent in vivo and can effectively eliminate RMS tumors in two metastatic and two orthotopic models. Therefore, our study credentials CAR T cell therapy targeting FGFR4 to treat patients with RMS.


Assuntos
Receptores de Antígenos Quiméricos , Rabdomiossarcoma , Animais , Criança , Humanos , Camundongos , Linhagem Celular Tumoral , Imunoterapia Adotiva , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Antígenos Quiméricos/genética , Rabdomiossarcoma/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA