Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Opt Express ; 31(8): 12261-12279, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157389

RESUMO

Hyperspectral (HS) imaging (HSI) expands the number of channels captured within the electromagnetic spectrum with respect to regular imaging. Thus, microscopic HSI can improve cancer diagnosis by automatic classification of cells. However, homogeneous focus is difficult to achieve in such images, being the aim of this work to automatically quantify their focus for further image correction. A HS image database for focus assessment was captured. Subjective scores of image focus were obtained from 24 subjects and then correlated to state-of-the-art methods. Maximum Local Variation, Fast Image Sharpness block-based Method and Local Phase Coherence algorithms provided the best correlation results. With respect to execution time, LPC was the fastest.

2.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850461

RESUMO

Hyperspectral Imaging (HSI) is increasingly adopted in medical applications for the usefulness of understanding the spectral signature of specific organic and non-organic elements. The acquisition of such images is a complex task, and the commercial sensors that can measure such images is scarce down to the point that some of them have limited spatial resolution in the bands of interest. This work proposes an approach to enhance the spatial resolution of hyperspectral histology samples using super-resolution. As the data volume associated to HSI has always been an inconvenience for the image processing in practical terms, this work proposes a relatively low computationally intensive algorithm. Using multiple images of the same scene taken in a controlled environment (hyperspectral microscopic system) with sub-pixel shifts between them, the proposed algorithm can effectively enhance the spatial resolution of the sensor while maintaining the spectral signature of the pixels, competing in performance with other state-of-the-art super-resolution techniques, and paving the way towards its use in real-time applications.


Assuntos
Algoritmos , Ambiente Controlado , Técnicas Histológicas , Imageamento Hiperespectral , Processamento de Imagem Assistida por Computador
3.
Sensors (Basel) ; 22(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015906

RESUMO

In recent years, researchers designed several artificial intelligence solutions for healthcare applications, which usually evolved into functional solutions for clinical practice. Furthermore, deep learning (DL) methods are well-suited to process the broad amounts of data acquired by wearable devices, smartphones, and other sensors employed in different medical domains. Conceived to serve the role of diagnostic tool and surgical guidance, hyperspectral images emerged as a non-contact, non-ionizing, and label-free technology. However, the lack of large datasets to efficiently train the models limits DL applications in the medical field. Hence, its usage with hyperspectral images is still at an early stage. We propose a deep convolutional generative adversarial network to generate synthetic hyperspectral images of epidermal lesions, targeting skin cancer diagnosis, and overcome small-sized datasets challenges to train DL architectures. Experimental results show the effectiveness of the proposed framework, capable of generating synthetic data to train DL classifiers.


Assuntos
Inteligência Artificial , Neoplasias Cutâneas , Atenção à Saúde , Humanos , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico
4.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336337

RESUMO

Hyperspectral Imaging (HSI) techniques have demonstrated potential to provide useful information in a broad set of applications in different domains, from precision agriculture to environmental science. A first step in the preparation of the algorithms to be employed outdoors starts at a laboratory level, capturing a high amount of samples to be analysed and processed in order to extract the necessary information about the spectral characteristics of the studied samples in the most precise way. In this article, a custom-made scanning system for hyperspectral image acquisition is described. Commercially available components have been carefully selected in order to be integrated into a flexible infrastructure able to obtain data from any Generic Interface for Cameras (GenICam) compliant devices using the gigabyte Ethernet interface. The entire setup has been tested using the Specim FX hyperspectral series (FX10 and FX17) and a Graphical User Interface (GUI) has been developed in order to control the individual components and visualise data. Morphological analysis, spectral response and optical aberration of these pushbroom-type hyperspectral cameras have been evaluated prior to the validation of the whole system with different plastic samples for which spectral signatures are extracted and compared with well-known spectral libraries.


Assuntos
Algoritmos , Cintilografia
5.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36236240

RESUMO

Cancer originates from the uncontrolled growth of healthy cells into a mass. Chromophores, such as hemoglobin and melanin, characterize skin spectral properties, allowing the classification of lesions into different etiologies. Hyperspectral imaging systems gather skin-reflected and transmitted light into several wavelength ranges of the electromagnetic spectrum, enabling potential skin-lesion differentiation through machine learning algorithms. Challenged by data availability and tiny inter and intra-tumoral variability, here we introduce a pipeline based on deep neural networks to diagnose hyperspectral skin cancer images, targeting a handheld device equipped with a low-power graphical processing unit for routine clinical testing. Enhanced by data augmentation, transfer learning, and hyperparameter tuning, the proposed architectures aim to meet and improve the well-known dermatologist-level detection performances concerning both benign-malignant and multiclass classification tasks, being able to diagnose hyperspectral data considering real-time constraints. Experiments show 87% sensitivity and 88% specificity for benign-malignant classification and specificity above 80% for the multiclass scenario. AUC measurements suggest classification performance improvement above 90% with adequate thresholding. Concerning binary segmentation, we measured skin DICE and IOU higher than 90%. We estimated 1.21 s, at most, consuming 5 Watts to segment the epidermal lesions with the U-Net++ architecture, meeting the imposed time limit. Hence, we can diagnose hyperspectral epidermal data assuming real-time constraints.


Assuntos
Melanoma , Neoplasias Cutâneas , Dermoscopia/métodos , Humanos , Melaninas , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia
6.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433516

RESUMO

Currently, one of the most common causes of death worldwide is cancer. The development of innovative methods to support the early and accurate detection of cancers is required to increase the recovery rate of patients. Several studies have shown that medical Hyperspectral Imaging (HSI) combined with artificial intelligence algorithms is a powerful tool for cancer detection. Various preprocessing methods are commonly applied to hyperspectral data to improve the performance of the algorithms. However, there is currently no standard for these methods, and no studies have compared them so far in the medical field. In this work, we evaluated different combinations of preprocessing steps, including spatial and spectral smoothing, Min-Max scaling, Standard Normal Variate normalization, and a median spatial smoothing technique, with the goal of improving tumor detection in three different HSI databases concerning colorectal, esophagogastric, and brain cancers. Two machine learning and deep learning models were used to perform the pixel-wise classification. The results showed that the choice of preprocessing method affects the performance of tumor identification. The method that showed slightly better results with respect to identifing colorectal tumors was Median Filter preprocessing (0.94 of area under the curve). On the other hand, esophagogastric and brain tumors were more accurately identified using Min-Max scaling preprocessing (0.93 and 0.92 of area under the curve, respectively). However, it is observed that the Median Filter method smooths sharp spectral features, resulting in high variability in the classification performance. Therefore, based on these results, obtained with different databases acquired by different HSI instrumentation, the most relevant preprocessing technique identified in this work is Min-Max scaling.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Humanos , Bases de Dados Factuais , Algoritmos , Diagnóstico por Imagem
7.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235483

RESUMO

Hyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HSI microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20× magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies.


Assuntos
Encéfalo/diagnóstico por imagem , Glioblastoma/diagnóstico , Imageamento Hiperespectral , Rede Nervosa , Algoritmos , Encéfalo/patologia , Aprendizado Profundo , Glioblastoma/patologia , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação
8.
Sensors (Basel) ; 20(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291409

RESUMO

The primary treatment for malignant brain tumors is surgical resection. While gross total resection improves the prognosis, a supratotal resection may result in neurological deficits. On the other hand, accurate intraoperative identification of the tumor boundaries may be very difficult, resulting in subtotal resections. Histological examination of biopsies can be used repeatedly to help achieve gross total resection but this is not practically feasible due to the turn-around time of the tissue analysis. Therefore, intraoperative techniques to recognize tissue types are investigated to expedite the clinical workflow for tumor resection and improve outcome by aiding in the identification and removal of the malignant lesion. Hyperspectral imaging (HSI) is an optical imaging technique with the power of extracting additional information from the imaged tissue. Because HSI images cannot be visually assessed by human observers, we instead exploit artificial intelligence techniques and leverage a Convolutional Neural Network (CNN) to investigate the potential of HSI in twelve in vivo specimens. The proposed framework consists of a 3D-2D hybrid CNN-based approach to create a joint extraction of spectral and spatial information from hyperspectral images. A comparison study was conducted exploiting a 2D CNN, a 1D DNN and two conventional classification methods (SVM, and the SVM classifier combined with the 3D-2D hybrid CNN) to validate the proposed network. An overall accuracy of 80% was found when tumor, healthy tissue and blood vessels were classified, clearly outperforming the state-of-the-art approaches. These results can serve as a basis for brain tumor classification using HSI, and may open future avenues for image-guided neurosurgical applications.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Humanos , Imageamento Hiperespectral , Redes Neurais de Computação
9.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842410

RESUMO

Hyperspectral imaging (HSI) is a non-ionizing and non-contact imaging technique capable of obtaining more information than conventional RGB (red green blue) imaging. In the medical field, HSI has commonly been investigated due to its great potential for diagnostic and surgical guidance purposes. However, the large amount of information provided by HSI normally contains redundant or non-relevant information, and it is extremely important to identify the most relevant wavelengths for a certain application in order to improve the accuracy of the predictions and reduce the execution time of the classification algorithm. Additionally, some wavelengths can contain noise and removing such bands can improve the classification stage. The work presented in this paper aims to identify such relevant spectral ranges in the visual-and-near-infrared (VNIR) region for an accurate detection of brain cancer using in vivo hyperspectral images. A methodology based on optimization algorithms has been proposed for this task, identifying the relevant wavelengths to achieve the best accuracy in the classification results obtained by a supervised classifier (support vector machines), and employing the lowest possible number of spectral bands. The results demonstrate that the proposed methodology based on the genetic algorithm optimization slightly improves the accuracy of the tumor identification in ~5%, using only 48 bands, with respect to the reference results obtained with 128 bands, offering the possibility of developing customized acquisition sensors that could provide real-time HS imaging. The most relevant spectral ranges found comprise between 440.5-465.96 nm, 498.71-509.62 nm, 556.91-575.1 nm, 593.29-615.12 nm, 636.94-666.05 nm, 698.79-731.53 nm and 884.32-902.51 nm.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Máquina de Vetores de Suporte
10.
Sensors (Basel) ; 19(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813245

RESUMO

The main goal of brain cancer surgery is to perform an accurate resection of the tumor, preserving as much normal brain tissue as possible for the patient. The development of a non-contact and label-free method to provide reliable support for tumor resection in real-time during neurosurgical procedures is a current clinical need. Hyperspectral imaging is a non-contact, non-ionizing, and label-free imaging modality that can assist surgeons during this challenging task without using any contrast agent. In this work, we present a deep learning-based framework for processing hyperspectral images of in vivo human brain tissue. The proposed framework was evaluated by our human image database, which includes 26 in vivo hyperspectral cubes from 16 different patients, among which 258,810 pixels were labeled. The proposed framework is able to generate a thematic map where the parenchymal area of the brain is delineated and the location of the tumor is identified, providing guidance to the operating surgeon for a successful and precise tumor resection. The deep learning pipeline achieves an overall accuracy of 80% for multiclass classification, improving the results obtained with traditional support vector machine (SVM)-based approaches. In addition, an aid visualization system is presented, where the final thematic map can be adjusted by the operating surgeon to find the optimal classification threshold for the current situation during the surgical procedure.


Assuntos
Aprendizado Profundo , Glioblastoma/diagnóstico por imagem , Algoritmos , Encéfalo/diagnóstico por imagem , Biologia Computacional , Humanos , Processamento de Imagem Assistida por Computador , Medicina de Precisão , Máquina de Vetores de Suporte
11.
Sensors (Basel) ; 18(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567396

RESUMO

The work presented in this paper is focused on the use of spectroscopy to identify the type of tissue of human brain samples employing support vector machine classifiers. Two different spectrometers were used to acquire infrared spectroscopic signatures in the wavenumber range between 1200⁻3500 cm-1. An extensive analysis was performed to find the optimal configuration for a support vector machine classifier and determine the most relevant regions of the spectra for this particular application. The results demonstrate that the developed algorithm is robust enough to classify the infrared spectroscopic data of human brain tissue at three different discrimination levels.


Assuntos
Neoplasias Encefálicas/diagnóstico , Máquina de Vetores de Suporte , Humanos , Sensibilidade e Especificidade , Espectrofotometria Infravermelho
12.
Sensors (Basel) ; 18(7)2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018216

RESUMO

The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves very high computational requirements due to the huge amount of information captured by the sensors. One of the stages with higher computational load is the K-Nearest Neighbors (KNN) filtering algorithm. The main goal of this study is to optimize and parallelize the KNN algorithm by exploiting the GPU technology to obtain real-time processing during brain cancer surgical procedures. This parallel version of the KNN performs the neighbor filtering of a classification map (obtained from a supervised classifier), evaluating the different classes simultaneously. The undertaken optimizations and the computational capabilities of the GPU device throw a speedup up to 66.18× when compared to a sequential implementation.


Assuntos
Algoritmos , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico por imagem , Sistemas Computacionais , Encéfalo , Análise por Conglomerados , Humanos
13.
Sensors (Basel) ; 18(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389893

RESUMO

Hyperspectral imaging (HSI) allows for the acquisition of large numbers of spectral bands throughout the electromagnetic spectrum (within and beyond the visual range) with respect to the surface of scenes captured by sensors. Using this information and a set of complex classification algorithms, it is possible to determine which material or substance is located in each pixel. The work presented in this paper aims to exploit the characteristics of HSI to develop a demonstrator capable of delineating tumor tissue from brain tissue during neurosurgical operations. Improved delineation of tumor boundaries is expected to improve the results of surgery. The developed demonstrator is composed of two hyperspectral cameras covering a spectral range of 400-1700 nm. Furthermore, a hardware accelerator connected to a control unit is used to speed up the hyperspectral brain cancer detection algorithm to achieve processing during the time of surgery. A labeled dataset comprised of more than 300,000 spectral signatures is used as the training dataset for the supervised stage of the classification algorithm. In this preliminary study, thematic maps obtained from a validation database of seven hyperspectral images of in vivo brain tissue captured and processed during neurosurgical operations demonstrate that the system is able to discriminate between normal and tumor tissue in the brain. The results can be provided during the surgical procedure (~1 min), making it a practical system for neurosurgeons to use in the near future to improve excision and potentially improve patient outcomes.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Monitorização Intraoperatória/métodos , Imagem Óptica , Análise Espectral , Algoritmos , Bases de Dados Factuais , Humanos
14.
Sci Rep ; 14(1): 2982, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316938

RESUMO

The demand for lumpfish (Cyclopterus lumpus) as a biological control for salmon lice is increasing. However, lumpfish welfare is considered a limiting factor within aquaculture operations. Identifying a noninvasive parameter that measures subclinical stress in lumpfish is a key goal for improving their welfare. The lumpfish is documented to emit green and red biofluorescence within the blue shifted light of their environment. Here we show that lumpfish fluorescence responds to a therapeutic stressor within a controlled experiment. Lumpfish (n = 60) underwent a 3-h freshwater bath therapeutant to evaluate whether fluorescence spectra produced by the species respond to external stimuli. Lumpfish were quickly scanned under a hyperspectral camera (400-1000 nm spectral range) prior to and after treatment. The lumpfish were randomly divided into 3 groups with identical treatment. All groups increased fluorescence emissions, though the level of change depended on whether the averaged, red, or green spectra were analyzed; the control group (n = 20) remained constant. All lumpfish emitted green fluorescence (~ 590-670 nm) while a portion (49%) produced red fluorescence (~ 690-800 nm). As lumpfish fluorescence shifts in response to the applied stressor, this study provides insight into how fluorescence may be incorporated into the welfare management of lumpfish.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Imageamento Hiperespectral
15.
Sci Data ; 11(1): 681, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914542

RESUMO

Hyperspectral (HS) imaging (HSI) technology combines the main features of two existing technologies: imaging and spectroscopy. This allows to analyse simultaneously the morphological and chemical attributes of the objects captured by a HS camera. In recent years, the use of HSI provides valuable insights into the interaction between light and biological tissues, and makes it possible to detect patterns, cells, or biomarkers, thus, being able to identify diseases. This work presents the HistologyHSI-GB dataset, which contains 469 HS images from 13 patients diagnosed with brain tumours, specifically glioblastoma. The slides were stained with haematoxylin and eosin (H&E) and captured using a microscope at 20× power magnification. Skilled histopathologists diagnosed the slides and provided image-level annotations. The dataset was acquired using custom HSI instrumentation, consisting of a microscope equipped with an HS camera covering the spectral range from 400 to 1000 nm.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento Hiperespectral , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Microscopia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38486823

RESUMO

White blood cells, also called leukocytes, are hematopoietic cells of the immune system that are involved in protecting the body against both infectious diseases and foreign materials. The abnormal development and uncontrolled proliferation of these cells can lead to devastating cancers. Their timely recognition in the peripheral blood is critical to diagnosis and treatment. In this study, we developed a microscopic imaging system for improving the visualization of white blood cells on Wright's stained blood smear slides, with two different setups: polarized light imaging and polarized hyperspectral imaging. Based on the polarized light imaging setup, we collected the RGB images of Stokes vector parameters (S0, S1, S2, and S3) of five types of white blood cells (neutrophil, eosinophil, basophil, lymphocyte, and monocyte), and calculated the Stokes vector derived parameters: the degree of polarization (DOP), the degree of linear polarization (DOLP), and the degree of circular polarization (DOCP)). We also calculated Stokes vector data based on the polarized hyperspectral imaging setup. The preliminary results demonstrate that Stokes vector derived parameters (DOP, DOLP, and DOCP) could improve the visualization of granules in granulocytes (neutrophils, eosinophils, and basophils). Furthermore, Stokes vector derived parameters (DOP, DOLP, and DOCP) could improve the visualization of surface structures (protein patterns) of lymphocytes enabling subclassification of lymphocyte subpopulations. Finally, S2, S3, and DOCP could enhance the morphologic visualization of monocyte nucleus. We also demonstrated that the polarized hyperspectral imaging setup could provide complementary spectral information to the spatial information on different Stokes vector parameters of white blood cells. This work demonstrates that polarized light imaging & polarized hyperspectral imaging has the potential to become a strong imaging tool in the diagnosis of disorders arising from white blood cells.

17.
IEEE J Biomed Health Inform ; 27(6): 2670-2680, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35930509

RESUMO

The increasing prevalence of chronic non-communicable diseases makes it a priority to develop tools for enhancing their management. On this matter, Artificial Intelligence algorithms have proven to be successful in early diagnosis, prediction and analysis in the medical field. Nonetheless, two main issues arise when dealing with medical data: lack of high-fidelity datasets and maintenance of patient's privacy. To face these problems, different techniques of synthetic data generation have emerged as a possible solution. In this work, a framework based on synthetic data generation algorithms was developed. Eight medical datasets containing tabular data were used to test this framework. Three different statistical metrics were used to analyze the preservation of synthetic data integrity and six different synthetic data generation sizes were tested. Besides, the generated synthetic datasets were used to train four different supervised Machine Learning classifiers alone, and also combined with the real data. F1-score was used to evaluate classification performance. The main goal of this work is to assess the feasibility of the use of synthetic data generation in medical data in two ways: preservation of data integrity and maintenance of classification performance.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Algoritmos , Aprendizado de Máquina Supervisionado , Benchmarking
18.
NPJ Precis Oncol ; 7(1): 119, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964078

RESUMO

Brain surgery is one of the most common and effective treatments for brain tumour. However, neurosurgeons face the challenge of determining the boundaries of the tumour to achieve maximum resection, while avoiding damage to normal tissue that may cause neurological sequelae to patients. Hyperspectral (HS) imaging (HSI) has shown remarkable results as a diagnostic tool for tumour detection in different medical applications. In this work, we demonstrate, with a robust k-fold cross-validation approach, that HSI combined with the proposed processing framework is a promising intraoperative tool for in-vivo identification and delineation of brain tumours, including both primary (high-grade and low-grade) and secondary tumours. Analysis of the in-vivo brain database, consisting of 61 HS images from 34 different patients, achieve a highest median macro F1-Score result of 70.2 ± 7.9% on the test set using both spectral and spatial information. Here, we provide a benchmark based on machine learning for further developments in the field of in-vivo brain tumour detection and delineation using hyperspectral imaging to be used as a real-time decision support tool during neurosurgical workflows.

19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2274-2277, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891740

RESUMO

The capability of Hyperspectral Imaging (HSI) in rapidly acquiring abundant reflectance data in a non-invasive manner, makes it an ideal tool for obtaining diagnostic information about tissue pathology. Identifying wavelengths that provide the most discriminatory clues for specific pathologies will greatly assist in understanding their underlying biochemical characteristics. In this paper, we propose an efficient and computationally inexpensive method for determining the most relevant spectral bands for brain tumor classification. Empirical mode decomposition was used in combination with extrema analysis to extract the relevant bands based on the morphological characteristics of the spectra. The results of our experiments indicate that the proposed method outperforms the benchmark in reducing computational complexity while performing comparably with a 7-times reduction in the feature-set for classification on the test data.


Assuntos
Neoplasias Encefálicas , Imageamento Hiperespectral , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Análise de Dados , Humanos
20.
J Alzheimers Dis ; 79(2): 845-861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361594

RESUMO

BACKGROUND: Sociodemographic data indicate the progressive increase in life expectancy and the prevalence of Alzheimer's disease (AD). AD is raised as one of the greatest public health problems. Its etiology is twofold: on the one hand, non-modifiable factors and on the other, modifiable. OBJECTIVE: This study aims to develop a processing framework based on machine learning (ML) and optimization algorithms to study sociodemographic, clinical, and analytical variables, selecting the best combination among them for an accurate discrimination between controls and subjects with major neurocognitive disorder (MNCD). METHODS: This research is based on an observational-analytical design. Two research groups were established: MNCD group (n = 46) and control group (n = 38). ML and optimization algorithms were employed to automatically diagnose MNCD. RESULTS: Twelve out of 37 variables were identified in the validation set as the most relevant for MNCD diagnosis. Sensitivity of 100%and specificity of 71%were achieved using a Random Forest classifier. CONCLUSION: ML is a potential tool for automatic prediction of MNCD which can be applied to relatively small preclinical and clinical data sets. These results can be interpreted to support the influence of the environment on the development of AD.


Assuntos
Doença de Alzheimer/etiologia , Aprendizado de Máquina , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Doença de Alzheimer/diagnóstico , Estudos de Casos e Controles , Reserva Cognitiva , Depressão/complicações , Diabetes Mellitus Tipo 2/complicações , Exercício Físico , Feminino , Humanos , Hipertensão/complicações , Masculino , Transtornos Neurocognitivos/diagnóstico , Transtornos Neurocognitivos/etiologia , Fatores de Risco , Sensibilidade e Especificidade , Fatores Socioeconômicos , Uso de Tabaco/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA