Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(2): 344-357, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31762057

RESUMO

Wild barley, Hordeum vulgare spp. spontaneum, has a wider genetic diversity than its cultivated progeny, Hordeum vulgare spp. vulgare. Osmotic stress leads to a series of different responses in wild barley seminal roots, ranging from no changes in suberization to enhanced endodermal suberization of certain zones and the formation of a suberized exodermis, which was not observed in the modern cultivars studied so far. Further, as a response to osmotic stress, the hydraulic conductivity of roots was not affected in wild barley, but it was 2.5-fold reduced in cultivated barley. In both subspecies, osmotic adjustment by increasing proline concentration and decreasing osmotic potential in roots was observed. RNA-sequencing indicated that the regulation of suberin biosynthesis and water transport via aquaporins were different between wild and cultivated barley. These results indicate that wild barley uses different strategies to cope with osmotic stress compared with cultivated barley. Thus, it seems that wild barley is better adapted to cope with osmotic stress by maintaining a significantly higher hydraulic conductivity of roots during water deficit.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/metabolismo , Lipídeos/farmacologia , Pressão Osmótica/efeitos dos fármacos , Pressão Osmótica/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Aquaporinas/metabolismo , Transporte Biológico , Hordeum/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Prolina/metabolismo , Transcriptoma , Água/metabolismo
2.
BMC Genomics ; 20(1): 325, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035922

RESUMO

BACKGROUND: Water deficit and soil salinity substantially influence plant growth and productivity. When occurring individually, plants often exhibit reduced growth resulting in yield losses. The simultaneous occurrence of these stresses enhances their negative effects. Unraveling the molecular mechanisms of combined abiotic stress responses is essential to secure crop productivity under unfavorable environmental conditions. RESULTS: This study examines the effects of water deficit, salinity and a combination of both on growth and transcriptome plasticity of barley seminal roots by RNA-Seq. Exposure to water deficit and combined stress for more than 4 days significantly reduced total seminal root length. Transcriptome sequencing demonstrated that 60 to 80% of stress type-specific gene expression responses observed 6 h after treatment were also present after 24 h of stress application. However, after 24 h of stress application, hundreds of additional genes were stress-regulated compared to the short 6 h treatment. Combined salt and water deficit stress application results in a unique transcriptomic response that cannot be predicted from individual stress responses. Enrichment analyses of gene ontology terms revealed stress type-specific adjustments of gene expression. Further, global reprogramming mediated by transcription factors and consistent over-representation of basic helix-loop-helix (bHLH) transcription factors, heat shock factors (HSF) and ethylene response factors (ERF) was observed. CONCLUSION: This study reveals the complex transcriptomic responses regulating the perception and signaling of multiple abiotic stresses in barley.


Assuntos
Hordeum/genética , Estresse Salino , Reprogramação Celular , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hordeum/crescimento & desenvolvimento , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA de Plantas/química , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
New Phytol ; 221(1): 180-194, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30055115

RESUMO

Barley (Hordeum vulgare) is more drought tolerant than other cereals, thus making it an excellent model for the study of the chemical, transcriptomic and physiological effects of water deficit. Roots are the first organ to sense soil water deficit. Therefore, we studied the response of barley seminal roots to different water potentials induced by polyethylene glycol (PEG) 8000. We investigated changes in anatomical parameters by histochemistry and microscopy, quantitative and qualitative changes in suberin composition by analytical chemistry, transcript changes by RNA-sequencing (RNA-Seq), and the radial water and solute movement of roots using a root pressure probe. In response to osmotic stress, genes in the suberin biosynthesis pathway were upregulated that correlated with increased suberin amounts in the endodermis and an overall reduction in hydraulic conductivity (Lpr ). In parallel, transcriptomic data indicated no or only weak effects of osmotic stress on aquaporin expression. These results indicate that osmotic stress enhances cell wall suberization and markedly reduces Lpr of the apoplastic pathway, whereas Lpr of the cell-to-cell pathway is not altered. Thus, the sealed apoplast markedly reduces the uncontrolled backflow of water from the root to the medium, whilst keeping constant water flow through the highly regulated cell-to-cell path.


Assuntos
Hordeum/fisiologia , Pressão Osmótica/fisiologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Transporte Biológico , Parede Celular/metabolismo , Secas , Perfilação da Expressão Gênica , Hordeum/química , Hordeum/efeitos dos fármacos , Lipídeos/análise , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Polietilenoglicóis/farmacologia , Análise de Sequência de RNA
4.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626004

RESUMO

Trait variation among natural populations and their cultivated relatives occurs due to evolutionary forces, including selection and drift. In the present study, we analyzed these forces at the locus level in a global barley diversity set using population genetics analysis. Genome-wide outlier loci detection found a locus on chromosome 2H at which a common single nucleotide polymorphism (SNP) marker SCRI_RS_170235 accounted for the highest diversity index (Fst) values between cultivars and landraces and between cultivars and wild accessions. For a population wide genetic analysis, we developed a Polymerase Chain Reaction (PCR)-based cleaved amplified polymorphic marker at the identified locus. Marker genotyping of 115 genotypes identified a characteristic distribution of polymorphisms among the cultivated, landraces, and wild barley accessions. Using this marker, we screened a library of wild barley introgression lines (IL) and selected IL S42IL-109 that carried the wild introgression of the outlier locus in cultivar 'Scarlett' background. A plethora of phenotypic evaluation was performed between the S42IL109 and 'Scarlett' to dissect the putative effect of the identified outlier locus. Comparison of S42IL109 and 'Scarlett' revealed significant difference in the development of phyllochron two (Phyl-2), phyllochron three (Phyl-3), and phyllochron four (Phyl-4). Across the three phyllochrons, it was consistently observed that S42IL109 developed successive leaves in a shorter time span, by one to two days, compared to 'Scarlett'. These data suggest that outlier locus may influence phyllochron variation which underwent positive selection in barley.


Assuntos
Loci Gênicos , Hordeum/genética , Seleção Genética , Alelos , Variação Genética , Genética Populacional , Genoma de Planta , Genótipo , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA