Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766835

RESUMO

Caveolae-associated signaling toward mitochondria contributes to the cardioprotective mechanisms against ischemia-reperfusion (I/R) injury induced by ischemic postconditioning. In this work, we evaluated the role that the actin-cytoskeleton network exerts on caveolae-mitochondria communication during postconditioning. Isolated rat hearts subjected to I/R and to postconditioning were treated with latrunculin A, a cytoskeleton disruptor. Cardiac function was compared between these hearts and those exposed only to I/R and to the cardioprotective maneuver. Caveolae and mitochondria structures were determined by electron microscopy and maintenance of the actin-cytoskeleton was evaluated by phalloidin staining. Caveolin-3 and other putative caveolae-conforming proteins were detected by immunoblot analysis. Co-expression of caveolin-3 and actin was evaluated both in lipid raft fractions and in heart tissue from the different groups. Mitochondrial function was assessed by respirometry and correlated with cholesterol levels. Treatment with latrunculin A abolishes the cardioprotective postconditioning effect, inducing morphological and structural changes in cardiac tissue, reducing F-actin staining and diminishing caveolae formation. Latrunculin A administration to post-conditioned hearts decreases the interaction between caveolae-forming proteins, the co-localization of caveolin with actin and inhibits oxygen consumption rates in both subsarcolemmal and interfibrillar mitochondria. We conclude that actin-cytoskeleton drives caveolae signaling to mitochondria during postconditioning, supporting their functional integrity and contributing to cardiac adaption against reperfusion injury.


Assuntos
Cavéolas , Traumatismo por Reperfusão , Ratos , Animais , Cavéolas/metabolismo , Actinas/metabolismo , Caveolina 3/metabolismo , Citoesqueleto/metabolismo , Caveolina 1/metabolismo , Traumatismo por Reperfusão/metabolismo , Mitocôndrias/metabolismo
2.
Biochim Biophys Acta Bioenerg ; 1863(6): 148569, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35577152

RESUMO

Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.


Assuntos
Glicogênio Sintase , ATPases Mitocondriais Próton-Translocadoras , Trifosfato de Adenosina/metabolismo , Glicogênio Sintase/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA