Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Res ; 255: 119078, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754609

RESUMO

Coastal wetlands are known for their diverse ecosystems, yet their soil characteristics are often misunderstood and thought to be monotonous. These soils are frequently subjected to saline water saturation, leading to unique soil processes. However, the combination and intensity of these processes can vary considerably across different ecosystems. In this study, we hypothesize that these diverse soil processes not only govern the geochemical conditions in coastal ecosystems but also influence their ability to deliver ecosystem services. To test this hypothesis, we conducted soil analyses in mangroves, seagrass meadows, and hypersaline tidal flats along the Brazilian coast. We used key soil properties as indicators of soil processes and developed a conceptual model linking soil processes and soil-related ecosystem services in these environments. Under more anoxic conditions, the intense soil organic matter accumulation and sulfidization processes in mangroves evidence their significance in terms of climate regulation through organic carbon sequestration and contaminants immobilization. Similarly, pronounced sulfidization in seagrasses underscores their ability to immobilize contaminants. In contrast, hypersaline tidal flats soils exhibit increased intensities of salinization and calcification processes, leading to a high capacity for accumulating inorganic carbon as secondary carbonates (CaCO3), underscoring their role in climate regulation through inorganic carbon sequestration. Our findings show that contrary to previously thought coastal wetlands are far from monotonous, exhibiting significant variations in the types and intensities of soil processes, which in turn influence their capacity to deliver ecosystem services. This understanding is pivotal for guiding effective management strategies to enhance ecosystem services in coastal wetlands.


Assuntos
Solo , Áreas Alagadas , Solo/química , Brasil , Ecossistema , Salinidade
2.
Ecotoxicol Environ Saf ; 279: 116416, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749195

RESUMO

Wetland plants play a crucial role in regulating soil geochemistry, influencing heavy metal (HM) speciation, bioavailability, and uptake, thus impacting phytoremediation potential. We hypothesized that variations in HM biogeochemistry within estuarine soils are controlled by distinct estuarine plant species. We evaluated the soils (pH, redox potential, rhizosphere pH, HM total concentration, and geochemical fractionation), plant parts (shoot and root), and iron plaques of three plants growing in an estuary affected by Fe-rich mine tailings. Though the integration of multiple plant and soil analysis, this work emphasizes the importance of considering geochemical pools of HM for predicting their fate. Apart from the predominance of HM associated with Fe oxides, Typha domingensis accumulated the highest Cr and Ni contents in their shoots (> 100 mg kg-1). In contrast, Hibiscus tiliaceus accumulated more Cu and Pb in their roots (> 50 mg kg-1). The differences in rhizosphere soil conditions and root bioturbation explained the different potentials between the plants by altering the soil dynamics and HM's bioavailability, ultimately affecting their uptake. This study suggests that Eleocharis acutangula is not suitable for phytoextraction or phytostabilization, whereas Typha domingensis shows potential for Cr and Ni phytoextraction. In addition, we first showed Hibiscus tiliaceus as a promising wood species for Cu and Pb phytostabilization.


Assuntos
Biodegradação Ambiental , Estuários , Metais Pesados , Poluentes do Solo , Solo , Typhaceae , Áreas Alagadas , Metais Pesados/metabolismo , Metais Pesados/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Typhaceae/metabolismo , Solo/química , Rizosfera , Raízes de Plantas/metabolismo , Mineração
3.
J Environ Manage ; 366: 121915, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033627

RESUMO

Phosphorus is a limiting element for the productivity of mangroves, which in turn are important ecosystems in regulating nutrients cycle and climate change by sequestering carbon (C). Despite this, there is an intense process of degradation in these environments. In addition to providing socio-environmental services, mangrove replanting can also alter the dynamics of nutrients in soils. Therefore, this study aims to understand the changes in soil phosphorus (P) fractions after a mangrove restoration. Soil samples from an unvegetated area (NV), a mature mangrove (R) and 7 and 9 year old replanted mangroves at SE-Brazil (APA Guapi-mirim, Rio de Janeiro state) were collected and analyzed to characterize the redox conditions (Eh), pH, and iron (Fe) fractionation, Total Organic Carbon (TOC) contents and P fractionation (exchangeable P; P associated with reducible Fe and Mn oxyhydroxides; associated with Al silicates and hydroxides; associated with humic acids; associated with Ca and Mg; associated with humin). The results indicate an increase in TOC as the age of the mangrove restoration increases (from 8.6 to 17.9%). The pH values were significantly lower, reaching very acidic values, associated with an increase in Eh. Both parameters also showed strong seasonal variation, with a drop in Eh during the wet period (from 165% to -46%) and an increase in pH in the same period (from 6.0 to 6.7). Regarding P fractionation, the main P pool was organic P forms, which showed the highest concentrations in all studied sites. Unvegetated areas showed higher organic P forms (NV: 108.8 µg g-1) than vegetated areas (M7: 55.7 µg g-1, M9: 83.6 µg g-1, R: 87.3 µg g-1). Vegetated sites also showed lower levels of the PEx, PFeMn and Papatite fractions (total forest mean: 2.4 µg g-1, 5.8 µg g-1, 3.0 µg g-1, respectively). Besides no clear trend on P fractionation through seasons and forest age, pseudo-total P increased following the forest recovery (e.g. M7

4.
J Environ Manage ; 278(Pt 2): 111575, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33147526

RESUMO

The availability of phosphorus (P) in estuarine ecosystems is ultimately controlled by the nature of interactions between dissolved P and the soil components (e.g., soil minerals), especially iron (Fe) oxyhydroxides. P retention on Fe oxyhydroxides and its subsequent availability depends on mineral crystallinity and susceptibility to dissolution. However, in estuarine soils, geochemical conditions (e.g., redox oscillation and high soil organic matter content) may alter the fate of P and decrease the environmental quality of estuarine waters. The large input of Fe-rich tailings into the Rio Doce Estuary in Brazil in 2015 after a rupture of a Fe ore tailings dam (i.e., "Mariana mine disaster") offers a unique framework to evaluate the Fe oxyhydroxides role in P availability in estuarine soils, their potential effects on the cycling of P and eutrophication. We observed a significant correlation between Fe minerals and the P content in the estuary soils, suggesting that P enrichment was promoted by the deposited Fe-rich tailings. Adsorption isotherm curves indicated that mine tailings had a strong affinity for P due to presence of crystalline Fe oxyhydroxides in the tailings. Significant losses of Fe (62%) and P (56%) from the estuarine soil was observed two years after the initial impact and in response to redox conditions oscillations. Additionally, the content of high crystallinity Fe oxyhydroxides decreased significantly, whereas that of low crystallinity Fe oxyhydroxides showed an increase over time. These changes were associated with the dissimilatory Fe reduction, which led an increase in the concentrations of readily available P (2015: 2.30 ± 0.41 mg kg-1; 2017: 3.83 ± 1.82 mg kg-1; p < 0.001) in the studied soils. Moreover, in 2017, the dissolved P content exceeded the recommended environmental safety limits by five times. Our results indicate that Fe oxyhydroxides are a continuous source of dissolved P for the ecosystem, and Fe-rich tailings deposited in the estuarine ecosystem may be linked to a potential eutrophication.


Assuntos
Fósforo , Solo , Brasil , Ecossistema , Ferro
5.
Environ Geochem Health ; 41(2): 603-615, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30022342

RESUMO

This study aimed to evaluate mine water reuse, elucidating the potential problems related to trace metal biogeochemistry focusing on Cu dynamics in water, soil, and plants. Water samples were collected from a Cu mine and a reservoir used to store mine water. Additional samples were taken from soils from an uncultivated area and a banana orchard (irrigated with mine water for at least 10 years) and plant from the irrigated area. The following parameters were analyzed: pH, redox potential, dissolved ions in water samples (e.g., Ca2+, Mg2+, Na+, K+, Cu2+, SO 4 2- , and Cl-), bioavailable Cu and Cu solid-phase fractionation (in soils and reservoir sediments samples), as well as Cu content in banana plants. Mine water presents high dissolved Cu concentration (mean 2.3 ± 0.0 mg L-1), limiting its use for irrigation. Water storage at the reservoir increased water quality, reducing dissolved Cu concentration (mean 0.2 ± 0.0 mg L-1), due to adsorption/precipitation as carbonates (mean 131.8 ± 24.6 mg kg-1), organic matter (mean 1526.2 ± 4.7 mg kg-1) and sulfides (mean 158.4 ± 56.9 mg kg-1). Despite higher water quality at the reservoir, the use of mine water increased the amount of bioavailable Cu in soils, which was primarily associated with organic matter. Increased bioavailable Cu in the soil did not increase the Cu content of banana leaves but resulted in high Cu content of roots and fruit, increasing the risk of toxicity for the population.


Assuntos
Irrigação Agrícola/métodos , Cobre/análise , Cobre/farmacocinética , Mineração , Musa/química , Disponibilidade Biológica , Brasil , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Metais/análise , Musa/efeitos dos fármacos , Musa/metabolismo , Medição de Risco/métodos , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/farmacocinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética , Qualidade da Água
6.
Molecules ; 23(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513663

RESUMO

The tsscds method, recently developed in our group, discovers chemical reaction mechanisms with minimal human intervention. It employs accelerated molecular dynamics, spectral graph theory, statistical rate theory and stochastic simulations to uncover chemical reaction paths and to solve the kinetics at the experimental conditions. In the present review, its application to solve mechanistic/kinetics problems in different research areas will be presented. Examples will be given of reactions involved in photodissociation dynamics, mass spectrometry, combustion chemistry and organometallic catalysis. Some planned improvements will also be described.


Assuntos
Modelos Químicos , Catálise , Cinética , Simulação de Dinâmica Molecular , Termodinâmica
7.
Environ Res ; 142: 297-308, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26186138

RESUMO

Wildfires frequently threaten water quality through the transfer of eroded ash and soil into rivers and reservoirs. The ability to anticipate risks for water resources from wildfires is fundamental for implementing effective fire preparedness plans and post-fire mitigation measures. Here we present a new approach that allows quantifying the amount and characteristics of ash generated under different wildfire severities and its respective water contamination potential. This approach is applied to a wildfire in an Australian dry sclerophyll eucalypt forest, but can be adapted for use in other environments. The Balmoral fire of October 2013 affected 12,694 ha of Sydney's forested water supply catchment. It produced substantial ash loads that increased with fire severity, with 6, 16 and 34 Mg ha(-1) found in areas affected by low, high and extreme fire severity, respectively. Ash bulk density was also positively related to fire severity. The increase with fire severity in the total load and bulk density of the ash generated is mainly attributed to a combination of associated increases in (i) total amount of fuel affected by fire and (ii) contribution of charred mineral soil to the ash layer. Total concentrations of pollutants and nutrients in ash were mostly unrelated to fire severity and relatively low compared to values reported for wildfire ash in other environments (e.g. 4.0-7.3mg As kg(-1); 2.3-4.1 B mg kg(-1); 136-154 P mg kg(-1)). Solubility of the elements analysed was also low, less than 10% of the total concentration for all elements except for B (6-14%) and Na (30-50%). This could be related to a partial loss of soluble components by leaching and/or wind erosion before the ash sampling (10 weeks after the fire and before major ash mobilisation by water erosion). Even with their relatively low concentrations of potential pollutants, the substantial total ash loads found here represent a water contamination risk if transported into the hydrological network during severe erosion events. For example, up to 4 Mg of ash-derived P could be delivered into a single water supply reservoir.


Assuntos
Incêndios , Poluição da Água , Austrália , Concentração de Íons de Hidrogênio , Metais/análise , Solo/química , Árvores
8.
Environ Pollut ; 352: 124133, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754690

RESUMO

Microplastic (MP) pollution has become a global concern due to its potential impacts on the environment, ecosystem services and human health. The goals of the present study were to document the MP contamination in wild specimens of Mytilus galloprovincialis sampled along the Atlantic coast of the North region of Portugal continental (NW Portuguese coast), and to estimate the human risk of MP intake (HRI) through the consumption of local mussels as seafood. Mussels were collected at four sampling sites along the NW Portuguese coast (40 mussels per site), and the whole soft body of each mussel was analysed for MP content. HRI estimates were based on the mean of MP items per wet weight of mussel analysed tissue (MP/g) and consumption habits. A total of 132 MP items were recovered from mussels. MP had diverse sizes (98-2690 µm) and colours. The most common shapes were fibres (39%) and pellets (36%). Five polymers were identified in the MP: polyethylene (50%), polystyrene (15%), poly(ethylene vinyl acetate) (14%), polyamide (12%) and polypropylene (9%). From the 160 analysed mussels, 55% had MP. The mean and standard error of the mean of mussel contamination ranged from 0.206 ± 0.067 and 0.709 ± 0.095 MP/g. Compared to estimates based on MP contamination in mussels from other areas and varied consumption habits, the HRI through the consumption of mussels from the NW Portuguese coast is relatively low.


Assuntos
Monitoramento Ambiental , Microplásticos , Mytilus , Alimentos Marinhos , Poluentes Químicos da Água , Animais , Portugal , Poluentes Químicos da Água/análise , Microplásticos/análise , Alimentos Marinhos/análise , Monitoramento Ambiental/métodos , Humanos , Mytilus/química , Contaminação de Alimentos/análise , Medição de Risco , Bivalves/química , Exposição Dietética/estatística & dados numéricos , Oceano Atlântico
9.
J Hazard Mater ; 474: 134592, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805820

RESUMO

This study investigates the impact of seasonality on estuarine soil geochemistry, focusing on redox-sensitive elements, particularly Fe, in a tropical estuary affected by Fe-rich mine tailings. We analyzed soil samples for variations in particle size, pH, redox potential (Eh), and the content of Fe, Mn, Cr, Cu, Ni, and Pb. Additionally, sequential extraction was employed to understand the fate of these elements. Results revealed dynamic changes in the soil geochemical environment, transitioning between near-neutral and suboxic/anoxic conditions in the wet season and slightly acidic to suboxic/oxic conditions in the dry season. During the wet season, fine particle deposition (83%) rich in Fe (50 g kg-1), primarily comprising crystalline Fe oxides, occurred significantly. Conversely, short-range ordered Fe oxides dominated during the dry season. Over consecutive wet/dry seasons, substantial losses of Fe (-55%), Mn (-41%), and other potentially toxic elements (Cr: -44%, Cu: -31%, Ni: -25%, Pb: -9%) were observed. Despite lower pseudo-total PTE contents, exchangeable PTEs associated with carbonate content increased over time (Cu: +188%, Ni: +557%, Pb: +99%). Modeling indicated climatic variables and short-range oxides substantially influenced PTE bioavailability, emphasizing the ephemeral Fe oxide control during the wet season and heightened ecological and health risks during the dry seasons.


Assuntos
Estuários , Mineração , Estações do Ano , Monitoramento Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Poluentes Químicos da Água/análise , Clima Tropical , Ferro/análise , Concentração de Íons de Hidrogênio , Oxirredução
10.
Heliyon ; 9(1): e13070, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36711285

RESUMO

Pollution-induced neurotoxicity is of high concern. This pilot study investigated the potential relationship between the presence of microplastics (MPs) in the brain of 180 wild fish (Dicentrarchus labrax, Platichthys flesus, Mugil cephalus) from a contaminated estuary and the activity of the acetylcholinesterase (AChE) enzyme. MPs were found in 9 samples (5% of the total), all of them from D. labrax collected in the summer, which represents 45% of the samples of this species collected in that season (20). Seventeen MPs were recovered from brain samples, with sizes ranging from 8 to 96 µm. Polyacrylamide, polyacrylic acid and one biopolymer (zein) were identified by Micro-Raman spectroscopy. Fish with MPs showed lower (p ≤ 0.05) AChE activity than those where MPs were not found. These findings point to the contribution of MPs to the neurotoxicity induced by long-term exposure to pollution, stressing the need of further studies on the topic to increase 'One Health' protection.

11.
Sci Total Environ ; 811: 152152, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34919924

RESUMO

Brazil hosts an extensive coastal area, marked by a great diversity of geoenvironments. The present study evaluated the role of geoclimatic factors in the geochemistry of mangrove soils by using wet extractions and several physical and chemical parameters. Soil samples were collected in 11 mangrove forests from NE (n = 94) and SE Brazil (n = 230). Our results show an important effect of the surrounding geology and climate on the geochemistry of the mangrove soils. NE mangroves are dominated by suboxic soils (mean: Eh of +150 ± 174 mV and pH 7.1 ± 0.5, respectively) while anoxic conditions prevail in the SE mangrove soils (mean: Eh -46 ± 251 mV and pH 6.5 ± 0.5). In the NE region, a period of several months without rainfall and high temperatures leads to soil suboxic conditions. Conversely, at the SE coast, the surrounding mountain range contributes to well-distributed rain favoring anoxic conditions. The contrasting geochemical environment caused differences in the geochemistry of elements such as C, Fe, and S. Significantly higher Fe (193 ± 24 µmol g-1) and organic carbon contents (6.9 ± 7.1%) were recorded in the SE coast. The higher organic carbon contents are possibly related to Fe organo-mineral associations. These differences are ultimately associated with the contrasting geological surroundings (crystalline massifs at the SE and the iron poor sedimentary formations at the NE). The higher contents of reactive Fe and organic carbon also triggered more intense pyritization in the SE mangroves (pyritic Fe: 93 ± 63 µmol g-1). Our results demonstrate that climate and geological surroundings create identifiable patterns at a regional level and, thus, studies should take these factors into account on future global modelling approaches.


Assuntos
Florestas , Solo , Brasil , Carbono , Áreas Alagadas
12.
Sci Rep ; 12(1): 22392, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575210

RESUMO

Seabirds are known to play an important role in the geochemical cycling of macronutrients; however, their role in cycling elements of environmental interest has not been investigated. Guano is an important source of marine-derived nutrients and trace metals in seabird nesting areas, but most of the available information on this topic is derived from local studies. In the present study, we used a bioenergetic model to estimate the amounts of cadmium (Cd), mercury (Hg) and lead (Pb) that are deposited via faecal material in seabird colonies worldwide. The findings showed that the seabirds excreted 39.3 Mg (Mg = metric ton or 1000 kg) of Cd, 35.7 Mg of Hg and 27.2 Mg of Pb annually. These amounts are of the same order of magnitude as those reported for other fluxes considered in the geochemical cycling of these elements (e.g. sea-salt spray, cement production, soil loss to oceans). Most of the deposition occurs in circumpolar zones in both hemispheres and, interestingly, high proportions of the metals in the excrements occur in geochemically labile forms, which can be easily leached into coastal waters and assimilated by marine organisms.


Assuntos
Mercúrio , Metais Pesados , Oligoelementos , Animais , Cádmio , Chumbo , Aves , Oligoelementos/análise , Monitoramento Ambiental , Metais Pesados/análise
13.
Mar Pollut Bull ; 166: 112267, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33752157

RESUMO

The role of Fe oxyhydroxides dynamic on metal bioavailability was studied in the Rio Doce estuary after the largest mining disaster in the world. Soon after the disaster in 2015, metals were associated with Fe oxyhydroxides under a redox-active estuarine environment. Our results indicate that organic matter inputs from plant colonization on deposited tailings over estuarine soils led to a reductive dissolution of Fe oxyhydroxides within two years. Soil pseudo-total Fe content decreased by 70% between 2015 and 2017, while the total metal contents (Cr, Cu, Ni, Pb, and Zn) decreased by 79% in the soil. The losses of Fe and metals coupled to changes in Fe oxides crystallinity reveal a future ephemeral control of Fe oxyhydroxides over metal immobilization. Our results suggest a potential chronic contamination at the estuary and points to an aggravating scenario for the following years due to the increasing dominance of poorly crystalline Fe oxyhydroxides.


Assuntos
Desastres , Metais Pesados , Poluentes do Solo , Monitoramento Ambiental , Estuários , Metais/análise , Metais Pesados/análise , Mineração , Solo , Poluentes do Solo/análise
14.
Environ Int ; 146: 106284, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264733

RESUMO

Manganese (Mn) is an abundant element in terrestrial and coastal ecosystems and an essential micronutrient in the metabolic processes of plants and animals. Mn is generally not considered a potentially toxic element due to its low content in both soil and water. However, in coastal ecosystems, the Mn dynamic (commonly associated with the Fe cycle) is mostly controlled by redox processes. Here, we assessed the potential contamination of the Rio Doce estuary (SE Brazil) by Mn after the world's largest mine tailings dam collapse, potentially resulting in chronic exposure to local wildlife and humans. Estuarine soils, water, and fish were collected and analyzed seven days after the arrival of the tailings in 2015 and again two years after the dam collapse in 2017. Using a suite of solid-phase analyses including X-ray absorption spectroscopy and sequential extractions, our results indicated that a large quantity of MnII arrived in the estuary in 2015 bound to Fe oxyhydroxides. Over time, dissolved Mn and Fe were released from soils when FeIII oxyhydroxides underwent reductive dissolution. Due to seasonal redox oscillations, both Fe and Mn were then re-oxidized to FeIII, MnIII, and MnIV and re-precipitated as poorly crystalline Fe oxyhydroxides and poorly crystalline Mn oxides. In 2017, redox conditions (Eh: -47 ± 83 mV; pH: 6.7 ± 0.5) favorable to both Fe and Mn reduction led to an increase (~880%) of dissolved Mn (average for 2015: 66 ± 130 µg L-1; 2017: 582 ± 626 µg L-1) in water and a decrease (~75%, 2015: 547 ± 498 mg kg-1; 2017: 135 ± 80 mg kg-1) in the total Mn content in soils. The crystalline Fe oxyhydroxides content significantly decreased while the fraction of poorly ordered Fe oxides increased in the soils limiting the role of Fe in Mn retention. The high concentration of dissolved Mn found within the estuary two years after the arrival of mine tailings indicates a possible chronic contamination scenario, which is supported by the high levels of Mn in two species of fish living in the estuary. Our work suggests a high risk to estuarine biota and human health due to the rapid Fe and Mn biogeochemical dynamic within the impacted estuary.


Assuntos
Manganês , Colapso Estrutural , Animais , Brasil , Ecossistema , Compostos Férricos , Humanos , Oxirredução , Solo
15.
Environ Sci Pollut Res Int ; 27(10): 10757-10765, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31950418

RESUMO

This study assessed the effect of rinsing and boiling on total content of As (tAs) and of its inorganic and organic forms in different types of rice (polished and brown) from Spain and Ecuador. Rice was subjected to five different treatments. The results showed that the treatment consisting of three grain rinsing cycles followed by boiling in excess water showed a significant decrease in tAs content compared with raw rice. Regarding As species, it is worth noting that the different treatments significantly reduced the content of the most toxic forms of As. The estimated lifetime health risks indicate that pre-rinsing alone can reduce the risk by 50%, while combining it with discarding excess water can reduce the risk by 83%; therefore, the latter would be the preferable method.


Assuntos
Arsênio/análise , Oryza , Culinária , Equador , Contaminação de Alimentos/análise , Espanha
16.
Mar Pollut Bull ; 126: 318-322, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29421105

RESUMO

Acid-volatile sulfides (AVS) formation and its role on trace metals bioavailability were studied in semi-arid mangroves. The semi-arid climatic conditions at the studied sites, marked by low rainfall and high evapotranspiration rates, clearly limited the AVS formation (AVS contents varied from 0.10 to 2.34µmolg-1) by favoring oxic conditions (Eh>+350mV). The AVS contents were strongly correlated with reactive iron and organic carbon (r=0.84; r=0.83 respectively), evidencing their dominant role for AVS formation under semi-arid conditions. On the other hand, the recorded ΣSEM/AVS values remained >1 evidencing a little control of AVS over the bioavailability of trace metals and, thus, its minor role as a sink for toxic metals.


Assuntos
Metais Pesados/análise , Solo/química , Sulfetos/análise , Áreas Alagadas , Ácidos , Disponibilidade Biológica , Sedimentos Geológicos , Ferro , Metais/análise , Oligoelementos/análise , Poluentes Químicos da Água
17.
Sci Total Environ ; 621: 1103-1114, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29103642

RESUMO

This study examines the direct impact of a moderate/high-severity prescribed fire on phosphorous (P) stocks and partitioning in oligotrophic soils of a dry eucalypt forest within Sydney's water supply catchments, Australia. We also quantify and characterize the P present in the ash produced in this fire, and explore its relationships with the maximum temperatures recorded in the litter layer during the burn. In these oligotrophic soils, P concentrations were already relatively low before the fire (<130mgkg-1, mainly in organic forms). The fire consumed the entire litter layer and the thin Oa soil horizon, creating 6.3±3.1tha-1 of ash, and resulted into direct net P losses of ~7kgha-1. The P lost was mostly organic and there was a moderate net gain of inorganic and non-reactive P forms. Importantly, only a small proportion of the post-fire P was bioavailable (equivalent to ~3% of the total P lost during fire). Higher total P concentrations in ash corresponded with higher maximum temperatures (>650°C) recorded in the burning litter layer, but effects of fire temperature on ash P partitioning were not significant. Fire not only transformed P chemically, but also physically. Our results show that, immediately after fire, up to 2kgha-1 of P was present in the ash layer and, therefore, highly erodible and susceptible to be transported off-site by wind- and water erosion. Even if most of this P was, initially, of low bioavailability, its transfer to depositional environments with different geochemical conditions (e.g. anoxic sediments in water reservoirs) can alter its geochemical forms and availability. Further investigation of potential P transformations off-site is therefore essential, particularly given that SE-Australian water supply catchments are subject to recurrent perturbation by prescribed fire and wildfires. The latter have already resulted in major algal blooms in water supply reservoirs.

18.
Sci Total Environ ; 637-638: 498-506, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29754084

RESUMO

In November 2015, the largest socio-environmental disaster in the history of Brazil occurred when approximately 50 million m3 of mine tailings were released into the Doce River (SE Brazil), during the greatest failure of a tailings dam worldwide. The mine tailings passed through the Doce River basin, reaching the ecologically important estuary 17 days later. On the arrival of the mine wastes to the coastal area, contamination levels in the estuarine soils were measured to determine the baseline level of contamination and to enable an environmental risk assessment. Soil and tailings samples were collected and analyzed to determine the redox potential (Eh), pH, grain size and mineralogical composition, total metal contents (Fe, Mn, Cr, Zn, Ni, Cu, Pb and Co) and organic matter content. The metals were fractionated to elucidate the mechanisms governing the trace metal dynamics. The mine tailings are mostly composed of Fe (mean values for Fe: 45,200 ±â€¯2850; Mn: 433 ±â€¯110; Cr: 63.9 ±â€¯15.1; Zn: 62.4 ±â€¯28.4; Ni: 24.7 ±â€¯10.4; Cu: 21.3 ±â€¯4.6; Pb: 20.2 ±â€¯4.6 and Co: 10.7 ±â€¯4.8 mg kg-1), consisting of Fe-oxyhydroxides (goethite, hematite); kaolinite and quartz. The metal contents of the estuarine soils, especially the surface layers, indicate trace metal enrichment caused by the tailings. However, the metal contents were below threshold levels reported in Brazilian environmental legislation. Despite the fact that only a small fraction (<2%) of the metals identified are readily bioavailable (i.e. soluble and exchangeable fraction), trace metals associated with Fe oxyhydroxides contributed between 69.8 and 87.6% of the total contents. Control of the trace metal dynamics by Fe oxyhydroxides can be ephemeral, especially in wetland soils in which the redox conditions oscillate widely. Indeed, the physicochemical conditions (Eh < 100 mV and circumneutral pH) of estuarine soils favor Fe reduction microbial pathways, which will probably increase the trace metal bioavailability and contamination risk.


Assuntos
Vazamento de Resíduos Químicos , Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Brasil , Desastres , Metais , Mineração
19.
Mar Environ Res ; 61(3): 305-25, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16359727

RESUMO

Forty four core samples were analyzed to determine sediment particle size, total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen and total sulphur. Sequential extraction of S was also carried out, differentiating AVS (acid volatile sulphide), elemental S, organic S and pyrite S. The results obtained show that the presence of mussel rafts causes intense changes in the physicochemical composition and properties of the sea floor in the Ria de Arousa. The percentage of silt and clay, TOC, TIC and total N were significantly higher in the biodeposit than in the sediment. In contrast, there were no differences between the biodeposit and the sediment in terms of pH (8.0-8.7) and redox potential. The sediment and biodeposit were always anoxic, with values of redox potentials below -100 mV. In accordance with these conditions, the dominant fraction of S was pyrite S (FeS(2)). The AVS fraction and elemental S were present at low concentrations, except in the uppermost part of each core. Pyrite was relatively stable when the biodeposit and sediment were maintained in suspension for 8 days in oxic sea water; unlike the AVS fraction, which disappeared within a few hours.


Assuntos
Aquicultura , Bivalves/crescimento & desenvolvimento , Sedimentos Geológicos/química , Enxofre/análise , Análise de Variância , Animais , Carbono/análise , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/análise , Ferro/isolamento & purificação , Microscopia Eletrônica de Varredura , Nitrogênio/análise , Oceanos e Mares , Oxirredução , Tamanho da Partícula , Água do Mar , Sulfetos/análise , Sulfetos/isolamento & purificação , Enxofre/isolamento & purificação
20.
Sci Total Environ ; 542(Pt A): 685-93, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546764

RESUMO

The soil attributes controlling the CO2, and CH4 emissions were assessed in semiarid mangrove soils (NE-Brazil) under different anthropogenic activities. Soil samples were collected from different mangroves under different anthropogenic impacts, e.g., shrimp farming (Jaguaribe River); urban wastes (Cocó River) and a control site (Timonha River). The sites were characterized according to the sand content; physicochemical parameters (Eh and pH); total organic C; soil C stock (SCS) and equivalent SCS (SCSEQV); total P and N; dissolved organic C (DOC); and the degree of pyritization (DOP). The CO2 and CH4 fluxes from the soils were assessed using static closed chambers. Higher DOC and SCS and the lowest DOP promote greater CO2 emission. The CH4 flux was only observed at Jaguaribe which presented higher DOP, compared to that found in mangroves from humid tropical climates. Semiarid mangrove soils cannot be characterized as important greenhouse gas sources, compared to humid tropical mangroves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA