Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38915248

RESUMO

OBJECTIVES: Metabolomics aims for comprehensive characterization and measurement of small molecule metabolites (<1700 Da) in complex biological matrices. This study sought to assess the current understanding and usage of metabolomics in laboratory medicine globally and evaluate the perception of its promise and future implementation. METHODS: A survey was conducted by the IFCC metabolomics working group that queried 400 professionals from 79 countries. Participants provided insights into their experience levels, knowledge, and usage of metabolomics approaches, along with detailing the applications and methodologies employed. RESULTS: Findings revealed a varying level of experience among respondents, with varying degrees of familiarity and utilization of metabolomics techniques. Targeted approaches dominated the field, particularly liquid chromatography coupled to a triple quadrupole mass spectrometer, with untargeted methods also receiving significant usage. Applications spanned clinical research, epidemiological studies, clinical diagnostics, patient monitoring, and prognostics across various medical domains, including metabolic diseases, endocrinology, oncology, cardiometabolic risk, neurodegeneration and clinical toxicology. CONCLUSIONS: Despite optimism for the future of clinical metabolomics, challenges such as technical complexity, standardization issues, and financial constraints remain significant hurdles. The study underscores the promising yet intricate landscape of metabolomics in clinical practice, emphasizing the need for continued efforts to overcome barriers and realize its full potential in patient care and precision medicine.

2.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338310

RESUMO

Lipoprotein X (LP-X) is an abnormal cholesterol-rich lipoprotein particle that accumulates in patients with cholestatic liver disease and familial lecithin-cholesterol acyltransferase deficiency (FLD). Because there are no high-throughput diagnostic tests for its detection, a proton nuclear magnetic resonance (NMR) spectroscopy-based method was developed for use on a clinical NMR analyzer commonly used for the quantification of lipoproteins and other cardiovascular biomarkers. The LP-X assay was linear from 89 to 1615 mg/dL (cholesterol units) and had a functional sensitivity of 44 mg/dL. The intra-assay coefficient of variation (CV) varied between 1.8 and 11.8%, depending on the value of LP-X, whereas the inter-assay CV varied between 1.5 and 15.4%. The assay showed no interference with bilirubin levels up to 317 mg/dL and was also unaffected by hemolysis for hemoglobin values up to 216 mg/dL. Samples were stable when stored for up to 6 days at 4 °C but were not stable when frozen. In a large general population cohort (n = 277,000), LP-X was detected in only 50 subjects. The majority of LP-X positive cases had liver disease (64%), and in seven cases, had genetic FLD (14%). In summary, we describe a new NMR-based assay for LP-X, which can be readily implemented for routine clinical laboratory testing.


Assuntos
Colestase , Hepatopatias , Humanos , Lipoproteína-X , Colestase/diagnóstico , Colesterol , Espectroscopia de Ressonância Magnética
3.
J Am Heart Assoc ; 13(8): e031616, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533960

RESUMO

BACKGROUND: Frailty is common in heart failure (HF) and is associated with death but not routinely captured clinically. Frailty is linked with inflammation and malnutrition, which can be assessed by a novel plasma multimarker score: the metabolic vulnerability index (MVX). We sought to evaluate the associations between frailty and MVX and their prognostic impact. METHODS AND RESULTS: In an HF community cohort (2003-2012), we measured frailty as a proportion of deficits present out of 32 physical limitations and comorbidities, MVX by nuclear magnetic resonance spectroscopy, and collected extensive longitudinal clinical data. Patients were categorized by frailty score (≤0.14, >0.14 and ≤0.27, >0.27) and MVX score (≤50, >50 and ≤60, >60 and ≤70, >70). Cox models estimated associations of frailty and MVX with death, adjusted for Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) score and NT-proBNP (N-terminal pro-B-type natriuretic peptide). Uno's C-statistic measured the incremental value of MVX beyond frailty and clinical factors. Weibull's accelerated failure time regression assessed whether MVX mediated the association between frailty and death. We studied 985 patients (median age, 77; 48% women). Frailty and MVX were weakly correlated (Spearman's ρ=0.21). The highest frailty group experienced an increased rate of death, independent of MVX, MAGGIC score, and NT-proBNP (hazard ratio, 3.3 [95% CI, 2.5-4.2]). Frailty improved Uno's c-statistic beyond MAGGIC score and NT-proBNP (0.69-0.73). MVX only mediated 3.3% and 4.5% of the association between high and medium frailty groups and death, respectively. CONCLUSIONS: In this HF cohort, frailty and MVX are weakly correlated. Both independently contribute to stratifying the risk of death, suggesting that they capture distinct domains of vulnerability in HF.


Assuntos
Fragilidade , Insuficiência Cardíaca , Idoso , Feminino , Humanos , Masculino , Biomarcadores , Estudos de Coortes , Fragilidade/diagnóstico , Insuficiência Cardíaca/diagnóstico , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Prognóstico
4.
Am J Med ; 137(7): 640-648, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583752

RESUMO

BACKGROUND: Higher total serum cholesterol is associated with lower mortality in heart failure. Evaluating associations between lipoprotein subfractions and mortality among people with heart failure may provide insights into this observation. METHODS: We prospectively enrolled a community cohort of people with heart failure from 2003 to 2012 and assessed vital status through 2021. Plasma collected at enrollment was used to measure lipoprotein subfractions via nuclear magnetic resonance spectroscopy. A composite score of 6 lipoprotein subfractions was generated using the lipoprotein insulin resistance index (LP-IR) algorithm. Using covariate-adjusted proportional hazards regression models, we evaluated associations between LP-IR score and all-cause mortality. RESULTS: Among 1382 patients with heart failure (median follow-up 13.9 years), a one-standard-deviation (SD) increment in LP-IR score was associated with lower mortality (hazard ratio [HR] 0.93; 95% confidence interval [CI], 0.97-0.99). Among LP-IR parameters, mean high-density lipoprotein (HDL) particle size was significantly associated with lower mortality (HR per 1-SD decrement in mean HDL particle size = 0.83; 95% CI, 0.78-0.89), suggesting that the inverse association between LP-IR score and mortality may be driven by smaller mean HDL particle size. CONCLUSIONS: LP-IR score was inversely associated with mortality among patients with heart failure and may be driven by smaller HDL particle size.


Assuntos
Insuficiência Cardíaca , Resistência à Insulina , Humanos , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/sangue , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco/métodos , Lipoproteínas/sangue , Lipoproteínas HDL/sangue , Modelos de Riscos Proporcionais
5.
Circ Genom Precis Med ; 17(2): e004312, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38516784

RESUMO

BACKGROUND: Heart failure is heterogeneous syndrome with persistently high mortality. Nuclear magnetic resonance spectroscopy enables high-throughput metabolomics, suitable for precision phenotyping. We aimed to use targeted metabolomics to derive a metabolic risk score (MRS) that improved mortality risk stratification in heart failure. METHODS: Nuclear magnetic resonance was used to measure 21 metabolites (lipoprotein subspecies, branched-chain amino acids, alanine, GlycA (glycoprotein acetylation), ketone bodies, glucose, and citrate) in plasma collected from a heart failure community cohort. The MRS was derived using least absolute shrinkage and selection operator penalized Cox regression and temporal validation. The association between the MRS and mortality and whether risk stratification was improved over the Meta-Analysis Global Group in Chronic Heart Failure clinical risk score and NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels were assessed. RESULTS: The study included 1382 patients (median age, 78 years, 52% men, 43% reduced ejection fraction) with a 5-year survival rate of 48% (95% CI, 46%-51%). The MRS included 9 metabolites measured. In the validation data set, a 1 standard deviation increase in the MRS was associated with a large increased rate of death (hazard ratio, 2.2 [95% CI, 1.9-2.5]) that remained after adjustment for Meta-Analysis Global Group in Chronic Heart Failure score and NT-proBNP (hazard ratio, 1.6 [95% CI, 1.3-1.9]). These associations did not differ by ejection fraction. The integrated discrimination and net reclassification indices, and Uno's C statistic, indicated that the addition of the MRS improved discrimination over Meta-Analysis Global Group in Chronic Heart Failure and NT-proBNP. CONCLUSIONS: This MRS developed in a heart failure community cohort was associated with a large excess risk of death and improved risk stratification beyond an established risk score and clinical markers.


Assuntos
Insuficiência Cardíaca , Masculino , Humanos , Idoso , Feminino , Prognóstico , Fatores de Risco , Biomarcadores , Causas de Morte , Doença Crônica
6.
Front Cardiovasc Med ; 11: 1293901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327494

RESUMO

Background: The relationship between ketone bodies (KB) and mortality in patients with heart failure (HF) syndrome has not been well established. Objectives: The aim of this study is to assess the distribution of KB in HF, identify clinical correlates, and examine the associations between plasma KB and all-cause mortality in a population-based HF cohort. Methods: The plasma KB levels were measured by nuclear magnetic resonance spectroscopy. Multivariable linear regression was used to examine associations between clinical correlates and KB levels. Proportional hazard regression was employed to examine associations between KB (represented as both continuous and categorical variables) and mortality, with adjustment for several clinical covariates. Results: Among the 1,382 HF patients with KB measurements, the median (IQR) age was 78 (68, 84) and 52% were men. The median (IQR) KB was found to be 180 (134, 308) µM. Higher KB levels were associated with advanced HF (NYHA class III-IV) and higher NT-proBNP levels (both P < 0.001). The median follow-up was 13.9 years, and the 5-year mortality rate was 51.8% [95% confidence interval (CI): 49.1%-54.4%]. The risk of death increased when KB levels were higher (HRhigh vs. low group 1.23; 95% CI: 1.05-1.44), independently of a validated clinical risk score. The association between higher KB and mortality differed by ejection fraction (EF) and was noticeably stronger among patients with preserved EF. Conclusions: Most patients with HF exhibited KB levels that were consistent with those found in healthy adults. Elevated levels of KB were observed in patients with advanced HF. Higher KB levels were found to be associated with an increased risk of death, particularly in patients with preserved EF.

7.
medRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38313294

RESUMO

Large-scale gene-environment interaction (GxE) discovery efforts often involve compromises in the definition of outcomes and choice of covariates for the sake of data harmonization and statistical power. Consequently, refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C). This GxE was originally identified by Kilpeläinen et al., with the strongest cohort-specific signal coming from the Women's Genome Health Study (WGHS). We thus explored this GxE further in the WGHS (N = 23,294), with follow-up in the UK Biobank (UKB; N = 281,380), and the Multi-Ethnic Study of Atherosclerosis (MESA; N = 4,587). Self-reported PA (MET-hrs/wk), genotypes at rs295849 (nearest gene: LHX1), and NMR metabolomics data were available in all three cohorts. As originally reported, minor allele carriers of rs295849 in WGHS had a stronger positive association between PA and HDL-C (pint = 0.002). When testing a range of NMR metabolites (primarily lipoprotein and lipid subfractions) to refine the HDL-C outcome, we found a stronger interaction effect on medium-sized HDL particle concentrations (M-HDL-P; pint = 1.0×10-4) than HDL-C. Meta-regression revealed a systematically larger interaction effect in cohorts from the original meta-analysis with a greater fraction of women (p = 0.018). In the UKB, GxE effects were stronger both in women and using M-HDL-P as the outcome. In MESA, the primary interaction for HDL-C showed nominal significance (pint = 0.013), but without clear differences by sex and with a greater magnitude using large, rather than medium, HDL-P as an outcome. Towards reconciling these observations, further exploration leveraging NMR platform-specific HDL subfraction diameter annotations revealed modest agreement across all cohorts in the interaction affecting medium-to-large particles. Taken together, our work provides additional insights into a specific known gene-PA interaction while illustrating the importance of phenotype and model refinement towards understanding and replicating GxEs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA