RESUMO
α-, ß-, and γ-Synuclein are intrinsically disordered proteins implicated in physiological processes in the nervous system of vertebrates. α-synuclein (αSyn) is the amyloidogenic protein associated with Parkinson's disease and certain other neurodegenerative disorders. Intensive research has focused on the mechanisms that cause αSyn to form amyloid structures, identifying its NAC region as being necessary and sufficient for amyloid assembly. Recent work has shown that a 7-residue sequence (P1) is necessary for αSyn amyloid formation. Although γ-synuclein (γSyn) is 55% identical in sequence to αSyn and its pathological deposits are also observed in association with neurodegenerative conditions, γSyn is resilient to amyloid formation in vitro. Here, we report a rare single nucleotide polymorphism (SNP) in the SNCG gene encoding γSyn, found in two patients with amyotrophic lateral sclerosis (ALS). The SNP results in the substitution of Met38 with Ile in the P1 region of the protein. These individuals also had a second, common and nonpathological, SNP in SNCG resulting in the substitution of Glu110 with Val. In vitro studies demonstrate that the Ile38 variant accelerates amyloid fibril assembly. Contrastingly, Val110 retards fibril assembly and mitigates the effect of Ile38. Substitution of residue 38 with Leu had little effect, while Val retards, and Ala increases the rate of amyloid formation. Ile38 γSyn also results in the formation of γSyn-containing inclusions in cells. The results show how a single point substitution can enhance amyloid formation of γSyn and highlight the P1 region in driving amyloid formation in another synuclein family member.
Assuntos
Esclerose Lateral Amiotrófica , Doença de Parkinson , Animais , Humanos , Amiloide/química , Esclerose Lateral Amiotrófica/genética , gama-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Proteínas AmiloidogênicasRESUMO
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Assuntos
Neoplasias , Ácidos Nucleicos , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Agregados Proteicos , Neoplasias/metabolismo , Amiloide/químicaRESUMO
Parkinson's disease is clinically known for the loss of dopaminergic neurons in the substantia nigra pars compacta and accumulation of intraneuronal cytoplasmic inclusions rich in alpha-synuclein called 'Lewy bodies' and 'Lewy neurites'. Together with dementia with Lewy bodies and multiple system atrophy, Parkinson's disease is part of a group of disorders called synucleinopathies. Currently, diagnosis of synucleinopathies is based on the clinical assessment which often takes place in advanced disease stages. While the causal role of alpha-synuclein aggregates in these disorders is still debatable, measuring the levels, types or seeding properties of different alpha-synuclein species hold great promise as biomarkers. Recent studies indicate significant differences in peptide, protein and RNA levels in blood samples from patients with Parkinson's disease. Seed amplification assays using CSF, blood, skin biopsy, olfactory swab samples show great promise for detecting synucleinopathies and even for discriminating between different synucleinopathies. Interestingly, small extracellular vesicles, such as exosomes, display differences in their cargoes in Parkinson's disease patients versus controls. In this update, we focus on alpha-synuclein aggregation and possible sources of disease-related species released in extracellular vesicles, which promise to revolutionize the diagnosis and the monitoring of disease progression.
Assuntos
Exossomos , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/metabolismo , Sinucleinopatias/patologia , Doença de Parkinson/metabolismo , Exossomos/metabolismo , BiomarcadoresRESUMO
Parkinson's disease is a neurodegenerative disorder primarily known for typical motor features that arise due to the loss of dopaminergic neurons in the substantia nigra. However, the precise molecular aetiology of the disease is still unclear. Several cellular pathways have been linked to Parkinson's disease, including the autophagy-lysosome pathway, α-synuclein aggregation and mitochondrial function. Interestingly, the mechanistic link between GBA1, the gene that encodes for lysosomal ß-glucocerebrosidase (GCase), and Parkinson's disease lies in the interplay between GCase functions in the lysosome and mitochondria. GCase mutations alter mitochondria-lysosome contact sites. In the lysosome, reduced GCase activity leads to glycosphingolipid build-up, disrupting lysosomal function and autophagy, thereby triggering α-synuclein accumulation. Additionally, α-synuclein aggregates reduce GCase activity, creating a self-perpetuating cycle of lysosomal dysfunction and α-synuclein accumulation. GCase can also be imported into the mitochondria, where it promotes the integrity and function of mitochondrial complex I. Thus, GCase mutations that impair its normal function increase oxidative stress in mitochondria, the compartment where dopamine is oxidized. In turn, the accumulation of oxidized dopamine adducts further impairs GCase activity, creating a second cycle of GCase dysfunction. The oxidative state triggered by GCase dysfunction can also induce mitochondrial DNA damage which, in turn, can cause dopaminergic cell death. In this review, we highlight the pivotal role of GCase in Parkinson's disease pathogenesis and discuss promising examples of GCase-based therapeutics, such as gene and enzyme replacement therapies, small molecule chaperones and substrate reduction therapies, among others, as potential therapeutic interventions.
Assuntos
Glucosilceramidase , Lisossomos , Mitocôndrias , Doença de Parkinson , Humanos , Glucosilceramidase/metabolismo , Glucosilceramidase/genética , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Animais , alfa-Sinucleína/metabolismo , Autofagia/fisiologia , MutaçãoRESUMO
In Alzheimer's disease (AD), amyloid ß (Aß)-triggered cleavage of TrkB-FL impairs brain-derived neurotrophic factor (BDNF) signaling, thereby compromising neuronal survival, differentiation, and synaptic transmission and plasticity. Using cerebrospinal fluid and postmortem human brain samples, we show that TrkB-FL cleavage occurs from the early stages of the disease and increases as a function of pathology severity. To explore the therapeutic potential of this disease mechanism, we designed small TAT-fused peptides and screened their ability to prevent TrkB-FL receptor cleavage. Among these, a TAT-TrkB peptide with a lysine-lysine linker prevented TrkB-FL cleavage both in vitro and in vivo and rescued synaptic deficits induced by oligomeric Aß in hippocampal slices. Furthermore, this TAT-TrkB peptide improved the cognitive performance, ameliorated synaptic plasticity deficits and prevented Tau pathology progression in vivo in the 5XFAD mouse model of AD. No evidence of liver or kidney toxicity was found. We provide proof-of-concept evidence for the efficacy and safety of this therapeutic strategy and anticipate that this TAT-TrkB peptide has the potential to be a disease-modifying drug that can prevent and/or reverse cognitive deficits in patients with AD.
Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Peptídeos , Receptor trkB , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Receptor trkB/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Peptídeos/farmacologiaRESUMO
SUMOylation is a post-translational modification essential for various biological processes. SUMO proteins bind to target substrates in a three-step enzymatic pathway, which is rapidly reversible by the action of specific proteases, known as SENPs. Studies have shown that SUMOylation is dysregulated in several human disorders, including neurodegenerative diseases that are characterized by the progressive loss of neurons, mitochondrial dysfunction, deficits in autophagy, and oxidative stress. Considering the potential neuroprotective roles of SUMOylation, the aim of this study was to investigate the effects of SENP3 knockdown in H4 neuroglioma cells exposed to rotenone, an in vitro model of cytotoxicity that mimics dopaminergic loss in Parkinson's disease (PD). The current data show that SENP3 knockdown increases SUMO-2/3 conjugates, which is accompanied by reduced levels of the mitochondrial fission protein Drp1 and increased levels of the mitochondrial fusion protein OPA1. Of high interest, SENP3 knockdown prevented rotenone-induced superoxide production and cellular death. Taken together, these findings highlight the importance of SUMOylation in maintaining mitochondrial homeostasis and the neuroprotective potential of this modification in PD.
RESUMO
α-Synuclein (α-syn) phosphorylation at serine 129 (pS129α-syn) is substantially increased in Lewy body disease, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the pathogenic relevance of pS129α-syn remains controversial, so we sought to identify when pS129 modification occurs during α-syn aggregation and its role in initiation, progression and cellular toxicity of disease. Using diverse aggregation assays, including real-time quaking-induced conversion (RT-QuIC) on brain homogenates from PD and DLB cases, we demonstrated that pS129α-syn inhibits α-syn fibril formation and seeded aggregation. We also identified lower seeding propensity of pS129α-syn in cultured cells and correspondingly attenuated cellular toxicity. To build upon these findings, we developed a monoclonal antibody (4B1) specifically recognizing nonphosphorylated S129α-syn (WTα-syn) and noted that S129 residue is more efficiently phosphorylated when the protein is aggregated. Using this antibody, we characterized the time-course of α-syn phosphorylation in organotypic mouse hippocampal cultures and mice injected with α-syn preformed fibrils, and we observed aggregation of nonphosphorylated α-syn followed by later pS129α-syn. Furthermore, in postmortem brain tissue from PD and DLB patients, we observed an inverse relationship between relative abundance of nonphosphorylated α-syn and disease duration. These findings suggest that pS129α-syn occurs subsequent to initial protein aggregation and apparently inhibits further aggregation. This could possibly imply a potential protective role for pS129α-syn, which has major implications for understanding the pathobiology of Lewy body disease and the continued use of reduced pS129α-syn as a measure of efficacy in clinical trials.
Assuntos
Amiloide , Doença por Corpos de Lewy , Doença de Parkinson , Agregação Patológica de Proteínas , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosforilação , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Serina/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMO
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
RESUMO
Parkinson's disease (PD) is among the most prevalent neurodegenerative disorders, affecting over 10 million people worldwide. The protein encoded by the SNCA gene, alpha-synuclein (ASYN), is the major component of Lewy body (LB) aggregates, a histopathological hallmark of PD. Mutations and posttranslational modifications (PTMs) in ASYN are known to influence protein aggregation and LB formation, possibly playing a crucial role in PD pathogenesis. In this work, we applied computational methods to characterize the effects of missense mutations and PTMs on the structure and function of ASYN. Missense mutations in ASYN were compiled from the literature/databases and underwent a comprehensive predictive analysis. Phosphorylation and SUMOylation sites of ASYN were retrieved from databases and predicted by algorithms. ConSurf was used to estimate the evolutionary conservation of ASYN amino acids. Molecular dynamics (MD) simulations of ASYN wild-type and variants A30G, A30P, A53T, and G51D were performed using the GROMACS package. Seventy-seven missense mutations in ASYN were compiled. Although most mutations were not predicted to affect ASYN stability, aggregation propensity, amyloid formation, and chaperone binding, the analyzed mutations received relatively high rates of deleterious predictions and predominantly occurred at evolutionarily conserved sites within the protein. Moreover, our predictive analyses suggested that the following mutations may be possibly harmful to ASYN and, consequently, potential targets for future investigation: K6N, T22I, K34E, G36R, G36S, V37F, L38P, G41D, and K102E. The MD analyses pointed to remarkable flexibility and essential dynamics alterations at nearly all domains of the studied variants, which could lead to impaired contact between NAC and the C-terminal domain triggering protein aggregation. These alterations may have functional implications for ASYN and provide important insight into the molecular mechanism of PD, supporting the design of future biomedical research and improvements in existing therapies for the disease.
Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Agregados Proteicos , Processamento de Proteína Pós-Traducional/genética , MutaçãoRESUMO
Protein aggregation is a common age-associated process and can be a pathological hallmark of various neurodegenerative conditions, possibly because of an age-associated decline in the activity of components of the proteostasis network. The specific molecular drivers of protein aggregation in certain cell types are not well understood, posing tremendous challenges to current research aimed at devising strategies to treat neurodegenerative diseases. This preface introduces the special issue "Aging and Neurodegeneration: from molecular mechanisms to therapeutic interventions," featuring articles that assess the drivers of pathology in the aging cell, including oxidative stress, protein glycation/aggregation, and mitochondrial impairment.
Assuntos
Envelhecimento , Doenças Neurodegenerativas , Humanos , Envelhecimento/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Animais , Estresse Oxidativo/fisiologia , Mitocôndrias/metabolismoRESUMO
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by motor and non-motor symptoms. Motor symptoms include bradykinesia, resting tremors, muscular rigidity, and postural instability, while non-motor symptoms include cognitive impairments, mood disturbances, sleep disturbances, autonomic dysfunction, and sensory abnormalities. Some of these symptoms may be influenced by the proper hippocampus functioning, including adult neurogenesis. Doublecortin (DCX) is a microtubule-associated protein that plays a pivotal role in the development and differentiation of migrating neurons. This study utilized postmortem human brain tissue of PD and age-matched control individuals to investigate DCX expression in the context of adult hippocampal neurogenesis. Our findings demonstrate a significant reduction in the number of DCX-expressing cells within the subgranular zone (SGZ), as well as a decrease in the nuclear area of these DCX-positive cells in postmortem brain tissue obtained from PD cases, suggesting an impairment in the adult hippocampal neurogenesis. Additionally, we found that the nuclear area of DCX-positive cells correlates with pH levels. In summary, we provide evidence supporting that the process of hippocampal adult neurogenesis is likely to be compromised in PD patients before cognitive dysfunction, shedding light on potential mechanisms contributing to the neuropsychiatric symptoms observed in affected individuals. Understanding these mechanisms may offer novel insights into the pathophysiology of PD and possible therapeutic avenues.
Assuntos
Proteínas do Domínio Duplacortina , Proteína Duplacortina , Hipocampo , Proteínas Associadas aos Microtúbulos , Neurogênese , Neuropeptídeos , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Hipocampo/metabolismo , Masculino , Neuropeptídeos/metabolismo , Neuropeptídeos/biossíntese , Idoso , Proteínas Associadas aos Microtúbulos/metabolismo , Feminino , Neurogênese/fisiologia , Idoso de 80 Anos ou mais , Pessoa de Meia-IdadeRESUMO
Parkinson's disease (PD) is a neurological disorder with complex interindividual etiology that is becoming increasingly prevalent worldwide. Elevated alpha-synuclein levels can increase risk of PD and may influence epigenetic regulation of PD pathways. Here, we report genome-wide DNA methylation and hydroxymethylation alterations associated with overexpression of two PD-linked alpha-synuclein variants (wild-type and A30P) in LUHMES cells differentiated to dopaminergic neurons. Alpha-synuclein altered DNA methylation at thousands of CpGs and DNA hydroxymethylation at hundreds of CpGs in both genotypes, primarily in locomotor behavior and glutamate signaling pathway genes. In some cases, epigenetic changes were associated with transcription. SMITE network analysis incorporating H3K4me1 ChIP-seq to score DNA methylation and hydroxymethylation changes across promoters, enhancers, and gene bodies confirmed epigenetic and transcriptional deregulation of glutamate signaling modules in both genotypes. Our results identify distinct and shared impacts of alpha-synuclein variants on the epigenome, and associate alpha-synuclein with the epigenetic etiology of PD.
Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Epigênese Genética , Epigenômica , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transdução de Sinais/genética , Glutamatos/genética , Glutamatos/metabolismoRESUMO
The chemical rules governing protein folding have intrigued generations of researchers for decades. With the advent of artificial intelligence (AI), prediction of protein structure has improved tremendously. However, there is still a level of analysis that is only possible through wet laboratory experiments, especially in respect to the investigation of the pathological effect of mutations and posttranslational modifications (PTMs) on proteins of interest. This requires the availability of pure peptides and proteins in sufficient quantities for biophysical, biochemical, and functional studies. In this context, chemical protein synthesis and semi-synthesis are powerful tools in protein research, which help to enlighten the role of protein modification in the physiology and pathology of proteins. A protein of high interest in the field of biomedicine is alpha-synuclein (aSyn), a protein deeply associated with several devastating neurodegenerative disorders such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), or multiple systems atrophy (MSA). Here, we describe several methods and pathways to synthesize native or modified aSyn, and discuss how these approaches enable us to address pathological mechanisms that may open novel perspectives for therapeutic intervention.
Assuntos
Sinucleinopatias , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Humanos , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , Processamento de Proteína Pós-TraducionalRESUMO
The amyloid cascade hypothesis states that Aß aggregates induce pathological changes in tau, leading to neurofibrillary tangles (NFTs) and cell death. A caveat with this hypothesis is the spatio-temporal divide between plaques and NFTs. This has been addressed by the inclusion of soluble Aß and tau species in the revised amyloid cascade hypothesis. Nevertheless, despite the potential for non-plaque Aß to contribute to tau pathology, few studies have examined relative correlative strengths between total Aß, plaque Aß and intracellular Aß with tau pathology within a single tissue cohort. Employing frozen and fixed frontal cortex grey and white matter tissue from non-AD controls (Con; n = 39) and Alzheimer's disease (AD) cases (n = 21), biochemical and immunohistochemical (IHC) measures of Aß and AT-8 phosphorylated tau were assessed. Biochemical native-state dot blots from crude tissue lysates demonstrated robust correlations between total Aß and AT-8 tau, when considered as a combined cohort (Con and AD) and when as Con and AD cases, separately. In contrast, no associations between Aß plaques and AT-8 were reported when using IHC measurements in either Con or AD cases. However, when intracellular Aß was measured via the Aß specific antibody MOAB-2, a correlative relationship with AT-8 tau was reported in non-AD controls but not in AD cases. Collectively the data suggests that accumulating intracellular Aß may influence AT-8 pathology, early in AD-related neuropathological change. Despite the lower levels of phospho-tau and Aß in controls, the robust correlative relationships observed suggest a physiological association of Aß production and tau phosphorylation, which may be modified during disease. This study is supportive of a revised amyloid cascade hypothesis and demonstrates regional associative relationships between tau pathology and intracellular Aß, but not extracellular Aß plaques.
Assuntos
Doença de Alzheimer , Humanos , Neuropatologia , Emaranhados Neurofibrilares , Proteínas Amiloidogênicas , Anticorpos , Placa AmiloideRESUMO
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , alfa-Sinucleína , Doença de Parkinson/metabolismo , Humanos , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Animais , PesquisaRESUMO
Basic Science is crucial for the advancement of clinical care for Movement Disorders. Here, we provide brief updates on how basic science is important for understanding disease mechanisms, disease prevention, disease diagnosis, development of novel therapies and to establish the basis for personalized medicine. We conclude the viewpoint by a call to action to further improve interactions between clinician and basic scientists. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Transtornos dos Movimentos , Humanos , Transtornos dos Movimentos/terapia , Pesquisa Translacional Biomédica/métodos , Medicina de Precisão/métodosRESUMO
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Ferroptosis, an iron-dependent form of regulated cell death, may contribute to the progression of PD owing to an unbalanced brain redox status. Physical exercise is a complementary therapy that can modulate ferroptosis in PD by regulating the redox system through the activation of nuclear factor (erythroid-derived 2)-like 2 (NRF2) and brain-derived neurotrophic factor (BDNF) signaling. However, the precise effects of physical exercise on ferroptosis in PD remain unclear. In this review, we explored how physical exercise influences NRF2 and BDNF signaling and affects ferroptosis in PD. We further investigated relevant publications over the past two decades by searching the PubMed, Web of Science, and Google Scholar databases using keywords related to physical exercise, PD, ferroptosis, and neurotrophic factor antioxidant signaling. This review provides insights into current research gaps and demonstrates the necessity for future research to elucidate the specific mechanisms by which exercise regulates ferroptosis in PD, including the assessment of different exercise protocols and their long-term effects. Ultimately, exploring these aspects may lead to the development of improved exercise interventions for the better management of patients with PD.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Exercício Físico , Ferroptose , Fator 2 Relacionado a NF-E2 , Doença de Parkinson , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ferroptose/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Animais , Exercício Físico/fisiologia , Transdução de Sinais/fisiologiaRESUMO
Advanced glycation end products (AGEs) arise from the Maillard reaction between dicarbonyls and proteins, nucleic acids, or specific lipids. Notably, AGEs are linked to aging and implicated in various disorders, spanning from cancer to neurodegenerative diseases. While dicarbonyls like methylglyoxal preferentially target arginine residues, lysine-derived AGEs, such as N(6)-(1-carboxymethyl)lysine (CML) and N(6)-(1-carboxyethyl)lysine (CEL), are also abundant. Predicting protein glycation in vivo proves challenging due to the intricate nature of glycation reactions. In vitro, glycation is difficult to control, especially in proteins that harbor multiple glycation-prone amino acids. α-Synuclein (aSyn), pivotal in Parkinson's disease and synucleinopathies, has 15 lysine residues and is known to become glycated at multiple lysine sites. To understand the influence of glycation in specific regions of aSyn on its behavior, a strategy for site-specific glycated protein production is imperative. To fulfill this demand, we devised a synthetic route integrating solid-phase peptide synthesis, orthogonal protection of amino acid side-chain functionalities, and reductive amination strategies. This methodology yielded two disease-related N-terminal peptide fragments, each featuring five and six CML and CEL modifications, alongside a full-length aSyn protein containing a site-selective E46CEL modification. Our synthetic approach facilitates the broad introduction of glycation motifs at specific sites, providing a foundation for generating glycated forms of synucleinopathy-related and other disease-relevant proteins.
Assuntos
Produtos Finais de Glicação Avançada , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Produtos Finais de Glicação Avançada/química , Lisina/química , Aldeído Pirúvico/metabolismo , AminoácidosRESUMO
Serine 129 can be phosphorylated in pathological inclusions formed by the intrinsically disordered protein human α-synuclein (AS), a key player in Parkinson's disease and other synucleinopathies. Here, molecular simulations provide insight into the structural ensemble of phosphorylated AS. The simulations allow us to suggest that phosphorylation significantly impacts the structural content of the physiological AS conformational ensemble in aqueous solution, as the phosphate group is mostly solvated. The hydrophobic region of AS contains ß-hairpin structures, which may increase the propensity of the protein to undergo amyloid formation, as seen in the nonphysiological (nonacetylated) form of the protein in a recent molecular simulation study. Our findings are consistent with existing experimental data with the caveat of the observed limitations of the force field for the phosphorylated moiety.
RESUMO
Parkinson's disease is a neurodegenerative disorder associated with misfolding and aggregation of α-synuclein as a hallmark protein. Two yeast strain collections comprising conditional alleles of essential genes were screened for the ability of each allele to reduce or improve yeast growth upon α-synuclein expression. The resulting 98 novel modulators of α-synuclein toxicity clustered in several major categories including transcription, rRNA processing and ribosome biogenesis, RNA metabolism and protein degradation. Furthermore, expression of α-synuclein caused alterations in pre-rRNA transcript levels in yeast and in human cells. We identified the nucleolar DEAD-box helicase Dbp4 as a prominent modulator of α-synuclein toxicity. Downregulation of DBP4 rescued cells from α-synuclein toxicity, whereas overexpression led to a synthetic lethal phenotype. We discovered that α-synuclein interacts with Dbp4 or its human ortholog DDX10, sequesters the protein outside the nucleolus in yeast and in human cells, and stabilizes a fraction of α-synuclein oligomeric species. These findings provide a novel link between nucleolar processes and α-synuclein mediated toxicity with DDX10 emerging as a promising drug target.