Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(30): e2404013121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39024111

RESUMO

Rechargeable zinc-air batteries (ZABs) are regarded as a remarkably promising alternative to current lithium-ion batteries, addressing the requirements for large-scale high-energy storage. Nevertheless, the sluggish kinetics involving oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) hamper the widespread application of ZABs, necessitating the development of high-efficiency and durable bifunctional electrocatalysts. Here, we report oxygen atom-bridged Fe, Co dual-metal dimers (FeOCo-SAD), in which the active site Fe-O-Co-N6 moiety boosts exceptional reversible activity toward ORR and OER in alkaline electrolytes. Specifically, FeOCo-SAD achieves a half-wave potential (E1/2) of 0.87 V for ORR and an overpotential of 310 mV at a current density of 10 mA cm-2 for OER, with a potential gap (ΔE) of only 0.67 V. Meanwhile, FeOCo-SAD manifests high performance with a peak power density of 241.24 mW cm-2 in realistic rechargeable ZABs. Theoretical calculations demonstrate that the introduction of an oxygen bridge in the Fe, Co dimer induced charge spatial redistribution around Fe and Co atoms. This enhances the activation of oxygen and optimizes the adsorption/desorption dynamics of reaction intermediates. Consequently, energy barriers are effectively reduced, leading to a strong promotion of intrinsic activity toward ORR and OER. This work suggests that oxygen-bridging dual-metal dimers offer promising prospects for significantly enhancing the performance of reversible oxygen electrocatalysis and for creating innovative catalysts that exhibit synergistic effects and electronic states.

2.
Proc Natl Acad Sci U S A ; 120(15): e2300281120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011202

RESUMO

The performance optimization of isolated atomically dispersed metal active sites is critical but challenging. Here, TiO2@Fe species-N-C catalysts with Fe atomic clusters (ACs) and satellite Fe-N4 active sites were fabricated to initiate peroxymonosulfate (PMS) oxidation reaction. The AC-induced charge redistribution of single atoms (SAs) was verified, thus strengthening the interaction between SAs and PMS. In detail, the incorporation of ACs optimized the HSO5- oxidation and SO5·- desorption steps, accelerating the reaction progress. As a result, the Vis/TiFeAS/PMS system rapidly eliminated 90.81% of 45 mg/L tetracycline (TC) in 10 min. The reaction process characterization suggested that PMS as an electron donor would transfer electron to Fe species in TiFeAS, generating 1O2. Subsequently, the hVB+ can induce the generation of electron-deficient Fe species, promoting the reaction circulation. This work provides a strategy to construct catalysts with multiple atom assembly-enabled composite active sites for high-efficiency PMS-based advanced oxidation processes (AOPs).

3.
Environ Sci Technol ; 57(24): 9005-9017, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37289192

RESUMO

Ocean warming (OW) caused by anthropogenic activities threatens ocean ecosystems. Moreover, microplastic (MP) pollution in the global ocean is also increasing. However, the combined effects of OW and MPs on marine phytoplankton are unclear. Synechococcus sp., the most ubiquitous autotrophic cyanobacterium, was used to evaluate the response to OW + MPs under two warming scenarios (28 and 32 °C compared to 24 °C). The enhancement of the cell growth rate and carbon fixation under OW were weakened by MP exposure. Specifically, OW + MPs reduced carbon fixation by 10.9 and 15.4% at 28 and 32 °C, respectively. In addition, reduction in photosynthesis pigment contents of Synechococcus sp. under OW was intensified under OW + MPs, supporting the lower growth rate and carbon fixation under OW + MPs. Transcriptome plasticity (the evolutionary and adaptive potential of gene expression in response to changing environments) enabled Synechococcus sp. to develop a warming-adaptive transcriptional profile (downregulation of photosynthesis and CO2 fixation) under OW. Nevertheless, the downregulation of photosynthesis and CO2 fixation were alleviated under OW + MPs to increase responsiveness to the adverse effect. Due to the high abundances of Synechococcus sp. and its contributions to primary production, these findings are important for understanding the effects of MPs on carbon fixation and ocean carbon fluxes under global warming.


Assuntos
Synechococcus , Synechococcus/genética , Synechococcus/metabolismo , Plásticos , Microplásticos , Ecossistema , Dióxido de Carbono , Oceanos e Mares
4.
Environ Sci Technol ; 57(1): 428-439, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36546883

RESUMO

To gather enough energy to respond to harmful stimuli, most immune cells quickly shift their metabolic profile. This process of immunometabolism plays a critical role in the regulation of immune cell function. Triclosan, a synthetic antibacterial component present in a wide range of consumer items, has been shown to cause immunotoxicity in a number of organisms. However, it is unclear whether and how triclosan impacts immunometabolism. Here, human macrophages were used as model cells to explore the modulatory effect of triclosan on immunometabolism. Untargeted metabolomics using integrated liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) revealed that triclosan changed the global metabolic profile of macrophages. Furthermore, Seahorse energy analysis and 13C isotope-based metabolic flux analysis revealed that triclosan decreased mitochondrial respiratory activity and promoted a metabolic transition from oxidative phosphorylation to glycolysis. Triclosan also polarizes macrophages to the proinflammatory M1 phenotype and activates the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing receptor 3 (NLRP3) inflammasome, which is consistent with triclosan-induced metabolic phenotypic modifications. Collectively, these findings showed that triclosan exposure at micromolar concentrations caused metabolic reprogramming in macrophages, which triggered an inflammatory response. These findings are important for understanding the immunotoxicity caused by triclosan, which is necessary for determining the risk posed by triclosan in the environment.


Assuntos
Inflamassomos , Triclosan , Humanos , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Triclosan/toxicidade , Macrófagos/metabolismo , Antibacterianos/farmacologia , Metabolômica
5.
Environ Sci Technol ; 55(2): 1122-1133, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33393283

RESUMO

Engineered nanomaterials (ENMs), especially transition metal dichalcogenide (TMDC), have received great attention in recent years due to their advantageous properties and applications in various fields and are inevitably released into the environment during their life cycle. However, the effect of natural nanocolloids, widely distributed in the aquatic environment, on the environmental transformation and ecotoxicity of ENMs remains largely unknown. In this study, the effects of natural nanocolloids were compared to humic acid on the environmental transformation and ecotoxicity of single-layer molybdenum disulfide (SLMoS2), a representative TMDC. SLMoS2 with nanocolloids or humic acid (HA) enhanced their dispersion and Mo ion release in deionized water. Nanocolloids induced growth inhibition, reactive oxygen species (ROS) elevation, and cell permeability. Low-toxicity SLMoS2 combined with nanocolloids will enhance the above adverse effects. SLMoS2-nanocolloids induced serious damage (cell distortion and deformation), SLMoS2 internalization, and metabolic perturbation on Chlorella vulgaris (C. vulgaris). In contrast, the addition of HA induced the growth promotion and lower ROS level, inhibited the internalization of SLMoS2, and mitigated metabolic perturbation on C. vulgaris. This work provides insights into the effect of natural nanocolloids on the behaviors and biological risks of ENMs in aquatic environments, deserving substantial future attention.


Assuntos
Chlorella vulgaris , Nanoestruturas , Dissulfetos , Substâncias Húmicas , Molibdênio/toxicidade , Nanoestruturas/toxicidade
6.
Environ Sci Technol ; 54(8): 4865-4875, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32182041

RESUMO

Nanocolloids (Ncs) are ubiquitous in natural surface waters. However, the effects of Ncs on the fate and ecotoxicity of graphene oxide (GO, a popular engineered nanomaterial (ENM)) remain largely unknown. Ncs exhibit strong adsorption affinity (KL = 1.93 L/mg) and high adsorption capacity (176.2 mg/g) for GO. After Ncs hybridization, GO nanosheets became scrolls, and the aggregation rate of GO decreased. The influence of humic acid and Ncs on GO toxicity was compared. Humic acid mitigated the phytotoxicity of GO. However, GO and GO-Ncs were found to have an envelopment effect on algal cells, and both could enter algal cells. GO-Ncs induced higher reactive oxygen species (ROS) generation, stronger DNA damage and plasmolysis, and more obvious inhibition of photosynthesis compared to GO. Proteomic analysis revealed that photosystem I- and II-related proteins (e.g., E1ZQR2 and E1ZPG5) were regulated more significantly in the GO-Ncs groups than in the GO groups. A combined proteomic and metabolomic analysis showed that inhibition of carbohydrate, fatty acid, and amino acid metabolism contributed to ROS generation. Given the high concentrations and activity of Ncs, the above results highlight the need for reconsideration of the Ncs-mediated environmental behaviors and risks of ENMs and other pollutants.


Assuntos
Grafite , Nanoestruturas , Óxidos , Proteômica
7.
Environ Sci Technol ; 53(7): 3773-3781, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30865825

RESUMO

The interactions between nanoparticles and humic acid (HA) are critical to understanding the environmental risks and applications of nanoparticles. However, the interactions between HA fractions and graphene oxide (GO, a popular carbon nanosheet) at the molecular level remain largely unclear. Four HA fractions with molecular weights ranging from 4.6 to 23.8 kDa were separated, and the large HA fractions presented low oxygen contents and many aromatic structures. The binding constants of the large HA fractions on GO were 2.6- to 3551-fold higher than those of the small HA fractions, while the maximum adsorption capacities of the larger HA fractions onto GO were much higher. Atomic force microscopy (AFM) found that the small and large HA fractions were spread over the center and the edge of the GO nanosheets, respectively. Density functional theory (DFT) simulation and nuclear magnetic resonance spectroscopy confirmed the above phenomena (three adsorption patterns, "vs", "ps", and "pea") and revealed that HA bonded to the GO nanosheets mainly through van der Waals force and π-π interactions. The integrating analysis of binding affinity, AFM, and DFT provides new insights into the environmental behavior of GO and the applications of GO in pollutant removal under exposure from HA.


Assuntos
Grafite , Adsorção , Teoria da Densidade Funcional , Substâncias Húmicas , Interferometria , Microscopia de Força Atômica , Óxidos
8.
Environ Sci Technol ; 52(8): 4850-4860, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29554418

RESUMO

Nanocolloids are widespread in natural water systems, but their characterization and ecological risks are largely unknown. Herein, tangential flow ultrafiltration (TFU) was used to separate and concentrate nanocolloids from surface waters. Unexpectedly, nanocolloids were present in high concentrations ranging from 3.7 to 7.2 mg/L in the surface waters of the Harihe River in Tianjin City, China. Most of the nanocolloids were 10-40 nm in size, contained various trace metals and polycyclic aromatic hydrocarbons, and exhibited fluorescence properties. Envelopment effects and aggregation of Chlorella vulgaris in the presence of nanocolloids were observed. Nanocolloids entered cells and nanocolloid-exposed cells exhibited stronger plasmolysis, chloroplast damage and more starch grains than the control cells. Moreover, nanocolloids inhibited the cell growth, promoted reactive oxygen species (ROS), reduce the chlorophyll a content and increased the cell permeability. The genotoxicity of nanocolloids was also observed. The metabolomics analysis revealed a significant ( p < 0.05) downregulation of amino acids and upregulation of fatty acids contributing to ROS increase, chlorophyll a decrease and plasmolysis. The present work reveals that nanocolloids, which are different from specific, engineered nanoparticles (e.g., Ag nanoparticles), are present at high concentrations, exhibit an obvious toxicity in environments, and deserve more attention in the future.


Assuntos
Chlorella vulgaris , Nanopartículas Metálicas , Poluentes Químicos da Água , China , Clorofila A , Prata
9.
Environ Sci Technol ; 49(16): 10147-54, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26171725

RESUMO

Graphene oxide (GO) is a widely used carbonaceous nanomaterial. To date, the influence of natural organic matter (NOM) on GO toxicity in aquatic vertebrates has not been reported. During zebrafish embryogenesis, GO induced a significant hatching delay and cardiac edema. The intensive interactions of GO with the chorion induces damage to chorion protuberances, excessive generation of (•)OH, and changes in protein secondary structure. In contrast, humic acid (HA), a ubiquitous form of NOM, significantly relieved the above adverse effects. HA reduced the interactions between GO and the chorion and mitigated chorion damage by regulating the morphology, structures, and surface negative charges of GO. HA also altered the uptake and deposition of GO and decreased the aggregation of GO in embryonic yolk cells and deep layer cells. Furthermore, HA mitigated the mitochondrial damage and oxidative stress induced by GO. This work reveals a feasible antidotal mechanism for GO in the presence of NOM and avoids overestimating the risks of GO in the natural environment.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Grafite/toxicidade , Substâncias Húmicas/análise , Peixe-Zebra/embriologia , Animais , Córion/efeitos dos fármacos , Córion/ultraestrutura , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Grafite/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Nanoestruturas/química , Estresse Oxidativo/efeitos dos fármacos
10.
Environ Sci Technol ; 49(18): 10825-33, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26295980

RESUMO

Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.


Assuntos
Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/metabolismo , Grafite/farmacologia , Nanotubos de Carbono , Biomarcadores/metabolismo , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorella vulgaris/ultraestrutura , Ácidos Graxos Insaturados/metabolismo , Grafite/química , Lisina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanoestruturas , Nanotubos de Carbono/química , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Valina/metabolismo
11.
Sci Total Environ ; 946: 174165, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38925379

RESUMO

Oil-contaminated soil posed serious threats to the ecosystems and human health. The unique and tunable properties of engineered nanomaterials (ENMs) enable new technologies for removing and repairing oil-contaminated soil. However, few studies systematically examined the linkage between the change of physicochemical properties and the removal efficiency and environmental functions (e.g., potential risk) of ENMs, which is vital for understanding the ENMs environmental sustainability and utilization as a safety product. Thus, this review briefly summarized the environmental applications of ENMs to removing petroleum oil from complex soil systems: Theoretical and practical fundamentals (e.g., excellent physicochemical properties, environmental stability, controlled release, and recycling technologies), and various ENMs (e.g., iron-based, carbon-based, and metal oxides nanomaterials) remediation case studies. Afterward, this review highlights the removing mechanism (e.g., adsorption, photocatalysis, oxidation/reduction, biodegradation) and the impact factor (e.g., nanomaterials species, natural organic matter, and soil matrix) of ENMs during the remediation process in soil ecosystems. Both positive and negative effects of ENMs on terrestrial organisms have been identified, which are mainly derived from their diverse physicochemical properties. In linking nanotechnology applications for repairing oil-contaminated soil back to the physical and chemical properties of ENMs, this critical review aims to raise the research attention on using ENMs as a fundamental guide or even tool to advance soil treatment technologies.

12.
Water Res ; 260: 121908, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878307

RESUMO

Graphene oxide (GO, a popular 2D nanomaterial) poses great potential in water treatment arousing considerable attention regarding its fate and risk in aquatic environments. Extracellular polymeric substances (EPS) exist widely in water and play critical roles in biogeochemical processes. However, the influences of complex EPS fractions on the fate and risk of GO remain unknown in water. This study integrates fluorescence excitation-emission matrix-parallel factor, two-dimensional correlation spectroscopy, and biolayer interferometry studies on the binding characteristics and affinity between EPS fractions and GO. The results revealed the preferential binding of fluorescent aromatic protein-like component, fulvic-like component, and non-fluorescent polysaccharide in soluble EPS (S-EPS) and bound EPS (B-EPS) on GO via π-π stacking and electrostatic interaction that contributed to a higher adsorption capacity of S-EPS on GO and weaker affinity than of B-EPS. Moreover, the EPS fractions drive the morphological and structural alterations, and the attenuated colloid stability of GO in water. Notably, GO-EPS induced stronger phytotoxicity (e.g., photosynthetic damage, and membrane lipid remodeling) compared to pristine GO. Metabolic and functional lipid analysis further elucidated the regulation of amino acid, carbohydrate, and lipid metabolism contributed to the persistent phytotoxicity. This work provides insights into the roles and mechanisms of EPS fractions composition in regulating the environmental fate and risk of GO in natural water.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Grafite , Grafite/química , Grafite/toxicidade , Matriz Extracelular de Substâncias Poliméricas/química , Água/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
13.
Huan Jing Ke Xue ; 45(6): 3446-3458, 2024 Jun 08.
Artigo em Zh | MEDLINE | ID: mdl-38897765

RESUMO

Under the dual constraints of economic development and ecological carrying capacity, it is necessary to explore more technical means to achieve carbon neutrality and peak in China. Plants are important carriers of terrestrial and marine carbon sink systems, whereas phytoremediation is also a scientific method to remedy environmental pollution. However, the current studies mostly focus on the single aspect of plant carbon sequestration (including both the reduction of pollutant concentrations in environmental media and degradation of pollutants) or plant pollution reduction, without considering the dual benefits of plant pollution reduction and carbon sequestration. In order to explore the carbon neutral effect of plants, we focused on the pollution reduction and carbon sequestration effect of carbon neutral plants and its progress and evaluated the pollution reduction and carbon sequestration potential of carbon neutral plants and other organisms (such as animals and soil microorganisms) and environmental functional materials. The mechanisms underlying the synergistic coupling of carbon neutral plants and animals, microorganisms, and environmental functional materials and ecosystems in reducing pollution and carbon sequestration were also explored. Finally, we proposed constructive prospects for future research on the effects of carbon neutral plants on pollution reduction and carbon sink.


Assuntos
Biodegradação Ambiental , Sequestro de Carbono , Carbono , Poluição Ambiental , Plantas , Plantas/metabolismo , Carbono/metabolismo , Poluição Ambiental/prevenção & controle , China , Ecossistema
14.
Sci Total Environ ; 904: 166643, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647959

RESUMO

Increasing attention is being given to magnetic iron-based nanoparticles (MINPs) because of their potential environmental benefits. Owing to the earth abundance and high utilization of MINPs, as well as the significant functions of Fe in sustainable agriculture and environmental remediation, an understanding of the environmental fate of MINPs is indispensable. However, there are still knowledge gaps regarding the largely unknown environmental behaviors and fate of MINPs in soil-plant system. Thus, this review summarizes recent literature on the biogeochemical behavior (uptake, transportation, and transformation) of MINPs in soil and plants. The different possible uptake (e.g., foliar and root adsorption) and translocation (e.g., xylem, phloem, symplastic/apoplastic pathway, and endocytosis) pathways are discussed. Furthermore, drivers of MINPs uptake and transportation (e.g., soil characteristics, fertilizer treatments, copresence of inorganic and organic anions, meteorological conditions, and cell wall pores) in both soil and plant environments are summarized. This review also details the physical, chemical, and biological transformations of MINPs in soil-plant system. More importantly, a metadata analysis from the existing literature was employed to investigate the distinction between MINPs and other engineering nanoparticles biogeochemical behavior. In the future, more attention should be given to understanding the behavior of MINPs in soil-plant system and improving the capabilities of predictive models. This review thus highlights the main knowledge gaps regarding MINPs behavior and fate to provide guidance for their safe application in agrochemicals, crop production, and soil health.


Assuntos
Nanopartículas , Poluentes do Solo , Solo , Plantas/metabolismo , Ferro/análise , Fenômenos Magnéticos , Poluentes do Solo/análise
15.
Sci Total Environ ; 867: 161402, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638996

RESUMO

Soil microbial communities are usually regarded as one of the key players in the global element cycling. Moreover, an important consequence of oil contamination altering the structure of microbial communities is likely to result in an increased carbon emission. However, understanding of the complex interactions between environmental factors and biological communities is clearly lagging behind. Here it showed that the flux of carbon emissions increased in oil-contaminated soils, up to 13.64 g C·(kg soil)-1·h-1. This phenomenon was mainly driven by the enrichment of rare degrading microorganisms (e.g., Methylosinus, Marinobacter, Pseudomonas, Alcanivorax, Yeosuana, Halomonas and Microbulbifer) in the aerobic layer, rather than the anaerobic layer, which is more conducive to methane formation. In addition, petroleum hydrocarbons and environmental factors are equally important in shaping the structure of microbial communities (the ecological stability) and functional traits (e.g., fatty acid metabolism, lipid metabolism and amino acid metabolism) due to the different ecological sensitivities of microorganisms. Thus, it can be believed that the variability of rare hydrocarbon degrading microorganisms is of greater concern than changes in dominant microorganisms in oil-contaminated soil. Undoubtedly, this study could reveal the unique characterization of bacterial communities that mediate carbon emission and provide evidence for understanding the conversion from carbon stores to carbon gas release in oil-contaminated soils.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Carbono/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Solo , Ciclo do Carbono , Biodegradação Ambiental
16.
J Hazard Mater ; 443(Pt B): 130298, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36356516

RESUMO

Graphene oxide (GO, a popular 2D graphene-based nanomaterial) has developed quickly and has received considerable attention for its applications in environmental protection and pollutant removal. However, significant knowledge gaps still exist about the interaction characteristic and joint toxicity mechanism of GO and cadmium (Cd) on aquatic organisms. In this study, GO showed a high adsorption capacity (120. 6 mg/g) and strong adsorption affinity (KL = 0.85 L/mg) for Cd2+. Integrating multiple analytical methods (e.g., electron microscopy, Raman spectra, and 2D correlation spectroscopy) revealed that Cd2+ is uniformly adsorbed on the GO surface and edge mainly through cation-π interactions. The combined ecological effects of GO and Cd2+ on Chlorella vulgaris were observed. Cd2+ induced more severe growth inhibition, photosynthesis toxicity, ultrastructure damage and plasmolysis than GO. Interestingly, we found that GO nanosheets could augment the algal toxicity of Cd2+ (e.g., chlorophyll b, mitochondrial membrane damage, and uptake). Transcriptomics and metabolomics further explained the underlying mechanism. The results indicated that the regulation of PSI-, PSII-, and metal transport-related genes (e.g., ABCG37 and ZIP4) and the inhibition of metabolic pathways (e.g., amino acid, fatty acid, and carbohydrate metabolism) were responsible for the persistent phytotoxicity. The present work provides mechanistic insights into the roles of coexisting inorganic pollutants on the environmental fate and risk of GO in aquatic ecosystems.


Assuntos
Chlorella vulgaris , Grafite , Grafite/toxicidade , Cádmio/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier , Ecossistema
17.
Sci Total Environ ; 879: 162887, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36934947

RESUMO

Toxic heavy metals are common contaminants and will most likely interact with ubiquitous natural nanocolloids (Ncs) in the soil environment. However, the effect of soil Ncs on the fate and health risk of cadmium (Cd) have not been well addressed. Here, the interaction between Ncs and Cd is investigated using two-dimensional correlation spectroscopy (2DCOS) combined with synchronous fluorescence and Fourier transform infrared spectroscopy. Our results reveal that Cd binding to the soil Ncs surface is mainly driven through strong hydrophilic effects and π - π interactions, which contribute to a high adsorption capacity (366-612 mg/g) and strong affinity (KL = 4.3-9.7 L/mg) of Cd to soil Ncs. Interestingly, soil Ncs and Cd coexposure can significantly mediate the phytotoxicity (e.g., uptake, root growth, and oxidative stress) of Cd to rice (Oryza sativa L.) roots after 7 days of exposure. At the molecular level, metabolomic analysis reveals that the downregulated metabolic pathways (e.g., isoquinoline alkaloid and aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism) may contribute to the above adverse phytotoxicity. This study provides new insight into the effect of natural Ncs on the fate and health risks of toxic heavy metals in soil environments.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo/química , Poluentes do Solo/análise , Transporte Biológico , Raízes de Plantas/metabolismo
18.
J Hazard Mater ; 459: 132107, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37515989

RESUMO

Iron oxide nanoparticles (IONPs) have great application potential due to their multifunctional excellence properties, leading to the possibility of their release into soil environments. IONPs exhibit different adsorption properties toward environmental pollutants (e.g., heavy metals and organic compounds), thus the adsorption performance for various contaminants and the molecular interactions at the IONPs-pollutants interface are discussed. After solute adsorption, the change in the environmental behavior of IONPs is an important transformation process in the natural environments. The aggregation, aging process, and chemical/biological transformation of IONPs can be altered by soil solution chemistry, as well as by the presence of dissolved organic matter and microorganisms. Upon exposure to soil environments, IONPs have both positive and negative impacts on soil organisms (e.g., bacteria, plants, nematodes, and earthworms). Moreover, we compared the toxicity of IONPs alone to combined toxicity with environmental pollutants and pristine IONPs to aged IONPs, and the mechanisms of IONPs toxicity at the cellular level are also reviewed. Given the unanswered questions, future research should include prediction and design of IONPs, new characterization technology for monitoring IONPs transformation in soil ecosystems, and further refinement the environmental risk assessment of IONPs. This review will greatly enhance our knowledge of the performance and impact of IONPs in soil systems.


Assuntos
Poluentes Ambientais , Nanopartículas , Solo , Ecossistema , Adsorção , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química
19.
Water Res ; 232: 119678, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738560

RESUMO

Hematite (the most abundant iron oxide polymorph) is widely detected in the water environment and has attracted considerable attention. Natural nanocolloids (Ncs) exist ubiquitously in surface waters and play critical roles in biogeochemical processes. However, the influences of Ncs on the fate and phytotoxicity of hematite remain unknown. In this study, the infrared absorption spectra coupled with two-dimensional correlation spectroscopy analysis reveal that the specific binding interactions between Ncs and hematite primarily occur via hydrophilic effects and π-π interactions with an increase in the Ncs contact time. Moreover, binding with Ncs slightly promoted the aggregation rates of hematite particles in the BG-11 medium. Interestingly, Ncs remarkably mitigate the phytotoxicity (e.g., growth inhibition, oxidative stress, and mitochondrial toxicity) of nanosized and submicrosized hematite particles to Chlorella vulgaris after a 96 h exposure. The integrating metabolomic and transcriptomic analysis reveals that the regulated urea cycle, amino acids, and fatty acid-related metabolites (e.g., urea, serine, glutamate, and hexadecenoic acid) and genes (e.g., ACY1, CysC, and GLA) contribute to persistent phytotoxicity. This study provides new insights into the roles and mechanisms of natural Ncs in regulating the environmental risk of iron oxide minerals in aqueous media.


Assuntos
Chlorella vulgaris , Água , Água/química , Compostos Férricos/química , Minerais
20.
Chem Sci ; 14(29): 7818-7827, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502324

RESUMO

The optimization of the single-atom catalyst (SAC) performance has been the hot spot for years. It is widely acknowledged that the incorporation of adjacent single-atom sites (diatomic catalysts (DACs)) can enable synergistic effects, which can be used in cascade catalysis, dual-function catalysis, and performance regulation of intrinsic active sites. DACs have been widely applied in the CO2 reduction reaction (CO2RR), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), etc.; however, their application is limited in Fenton or Fenton-like reactions. This perspective summarizes the most advanced achievements in this field, followed by the proposed opportunities in further research, including regulation of the magnetic moment, inter-atomic distance effect, strain engineering, atomic cluster (AC)/nanoparticle (NP) modification, etc. It is demonstrated that this perspective can contribute to the DAC application in Fenton or Fenton-like reactions with innovative design and mechanisms being put forward.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA