RESUMO
Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species (including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial 36Ar, and the radiogenic isotope 40Ar, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.
Assuntos
Atmosfera/química , Meio Ambiente Extraterreno/química , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Voo Espacial , Argônio/análise , Carbono/análise , Carbono/química , Isótopos/análise , Metano/análise , Metano/química , Nitrogênio/análise , Nitrogênio/química , Voo Espacial/instrumentaçãoRESUMO
The Earth's equatorial stratosphere shows oscillations in which the east-west winds reverse direction and the temperatures change cyclically with a period of about two years. This phenomenon, called the quasi-biennial oscillation, also affects the dynamics of the mid- and high-latitude stratosphere and weather in the lower atmosphere. Ground-based observations have suggested that similar temperature oscillations (with a 4-5-yr cycle) occur on Jupiter, but these data suffer from poor vertical resolution and Jupiter's stratospheric wind velocities have not yet been determined. Here we report maps of temperatures and winds with high spatial resolution, obtained from spacecraft measurements of infrared spectra of Jupiter's stratosphere. We find an intense, high-altitude equatorial jet with a speed of approximately 140 m s(-1), whose spatial structure resembles that of a quasi-quadrennial oscillation. Wave activity in the stratosphere also appears analogous to that occurring on Earth. A strong interaction between Jupiter and its plasma environment produces hot spots in its upper atmosphere and stratosphere near its poles, and the temperature maps define the penetration of the hot spots into the stratosphere.
RESUMO
Laboratory spectra of the first overtone band (2.1480 micrometers, 4655.4 reciprocal centimeters) of solid nitrogen show additional structure at 2.1618 micrometers (4625.8 reciprocal centimeters) over a limited temperature range. The spectrum of Neptune's satellite Triton shows the nitrogen overtone band as well as the temperature-sensitive component. The temperature dependence of this band may be used in conjunction with ground-based observations of Triton as an independent means of determining the temperature of surface deposits of nitrogen ice. The surface temperature of Triton is found to be 38.0(+2.0)(-1.0) K, in agreement with previous temperature estimates and measurements. There is no spectral evidenceforthe presence of alpha-nitrogen on Triton's surface, indicating thatthere is less than 10 percent carbon monoxide in solid solution with the nitrogen on the surface.
RESUMO
Deuterated water (HDO) was detected in comet C/1995 O1 (Hale-Bopp) with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred D/H ratio in Hale-Bopp's water is (3.3 +/- 0.8) x 10(-4). This result is consistent with in situ measurements of comet P/Halley and the value found in C/1996 B2 (Hyakutake). This D/H ratio, higher than that in terrestrial water and more than 10 times the value for protosolar H2, implies that comets cannot be the only source for the oceans on Earth.
Assuntos
Óxido de Deutério/análise , Meteoroides , Água/análise , Gelo , TemperaturaRESUMO
The near-infrared spectrum of Triton reveals ices of nitrogen, methane, carbon monoxide, and carbon dioxide, of which nitrogen is the dominant component. Carbon dioxide ice may be spatially segregated from the other more volatile ices, covering about 10 percent of Triton's surface. The absence of ices of other hydrocarbons and nitriles challenges existing models of methane and nitrogen photochemistry on Triton.
RESUMO
Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.
RESUMO
Deuterated hydrogen cyanide (DCN) was detected in a comet, C/1995 O1 (Hale-Bopp), with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred deuterium/hydrogen (D/H) ratio in hydrogen cyanide (HCN) is (D/H)HCN = (2.3 +/- 0.4) x 10(-3). This ratio is higher than the D/H ratio found in cometary water and supports the interstellar origin of cometary ices. The observed values of D/H in water and HCN imply a kinetic temperature >/=30 +/- 10 K in the fragment of interstellar cloud that formed the solar system.
Assuntos
Deutério/análise , Cianeto de Hidrogênio/análise , Meteoroides , Gelo , Temperatura , ÁguaRESUMO
The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.
Assuntos
Atmosfera , Meio Ambiente Extraterreno , Júpiter , Água/análise , Amônia/análise , Carbono/análise , Hélio/análise , Hidrogênio/análise , Espectrometria de Massas , Nitrogênio/análise , Gases Nobres/análise , Oxigênio/análiseRESUMO
During the last decade, various zinc salts have been used against the common cold syndrome, which is known to be initiated by respiratory viruses, particularly rhinoviruses. Using rhinovirus as the challenge virus, we investigated whether zinc salts (Zn) could potentiate the antiviral action of native human leukocyte interferon (HuIFN-alpha) and rHuIFN-gamma. We found that HuIFN-alpha was potentiated tenfold at rather low levels of IFN activity (0.6-0.8 U/ml), resulting in 100% protection. Zn alone gave only marginal protection, if any. In contrast to HuIFN-alpha, rHuIFN-gamma directly increased the cytopathic effect of rhinovirus at low levels (<2 U/ml) but protected the cells at higher IFN levels (5-20 U/ml). No potentiation was seen with Zn. HuIFN-beta protected against rhinovirus at the same doses as used with HuIFN-alpha, but in contrast to HuIFN-alpha, no potentiation was noted.
Assuntos
Antivirais/farmacologia , Interferon-alfa/farmacologia , Zinco/metabolismo , Linhagem Celular , Efeito Citopatogênico Viral/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Rhinovirus/efeitos dos fármacos , Zinco/farmacologiaRESUMO
A new tetrazolium compound, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3- carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt), has recently been described which in the presence of phenazine methosulfate (PMS) is reduced by living cells to yield a formazan product that can be assayed colorimetrically. An important advantage of MTS/PMS over other tetrazolium dyes (e.g., MTT) is the aqueous solubility of the reduced formazan product which eliminates the need for detergent solubilization or organic solvent extraction steps. Its advantages over XTT/PMS, another tetrazolium which yields a water-soluble formazan product, include the absorbance range of color produced (515-580 nm as opposed to 450 nm), the rapidity of color development, and the storage stability of the MTS/PMS reagent solution. In the present study, MTS/PMS was used to assay viability and proliferation of the IL-2-dependent HT-2 and CTLL-2 cell lines and the IL-3-dependent FDC-P1 and FL5.12 cell lines. With each cell line, the amount of formazan product was time-dependent and proportional to the number of viable cells. Furthermore, with both HT-2 and CTLL-2 cells it was found that cultures could be simultaneously labeled with MTS/PMS and [3H]thymidine, with relatively little effect of the dye on uptake of the latter. This feature was further capitalized upon in studies with FDC-P1 cells, in which the co-addition of MTS/PMS and [3H]thymidine was used to distinguish between cell viability and proliferation.
Assuntos
Divisão Celular , Sobrevivência Celular , Formazans/análise , Interleucina-2/fisiologia , Interleucina-3/fisiologia , Sais de Tetrazólio/farmacologia , Animais , Linhagem Celular , Colorimetria , Interleucina-2/análise , Interleucina-3/análise , Camundongos , Tiazóis/farmacologiaRESUMO
Recently a new tetrazolium was described for the use of monitoring cell viability in culture. This tetrazolium, commonly referred to as MTS [3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt], has the unusual property that it can be reduced to a water-soluble formazan. beta-Nicotinamide adenine dinucleotide/reduced (NADH) and beta-nicotinamide adenine dinucleotide phosphate/reduced (NADPH) are examples of physiologically important reducing agents. In cell-free studies, MTS was reduce to the soluble formazan in the presence of NADH and NADPH, and reaction were compared to those with dithiothreitol (DTT) or 2-mercaptoethanol (2-ME). The efficiency of these reactions was enhanced 1000-fold by the presence of phenazine methosulfate. Selectivity in the electron transfer from NADPH was slightly greater than NADH, and NADPH or NADH was much greater than the thiols DTT or 2-ME. Generation of either NADH or NADPH in solution by malate dehydrogenase or isocitrate dehydrogenase, respectively, was monitored by the MTS reduction reaction. The rate of formazan formation was comparable to the formation of NADH or NADPH. This system represents a useful tool for evaluating reaction kinetics in solutions of NAD- or NADP-dependent dehydrogenase enzymes, and these reactions can be performed in typical biological buffers containing reducing agents without significant interference to the MTS/formazan system.
Assuntos
NADH Desidrogenase/metabolismo , NADPH Desidrogenase/metabolismo , Sais de Tetrazólio/metabolismo , Tiazóis/metabolismo , Ditiotreitol/farmacologia , Formazans/metabolismo , Indicadores e Reagentes , Cinética , Mercaptoetanol/farmacologia , Metilfenazônio Metossulfato/farmacologia , NAD/farmacologia , NADP/farmacologia , OxirreduçãoRESUMO
The present atmosphere of Titan exhibits evidence of extensive evolution, in the form of rapid photochemical destruction of methane and a large fractionation of the nitrogen and oxygen isotopes. Attempts to recover the initial inventory of volatiles lead toward a model in which nitrogen was originally supplied as NH3, essentially unmodified from its relative abundance in the outer solar nebula. Titan's atmospheric methane, in contrast, appears to have been formed from carbon and other carbon compounds, either by gas phase reactions in the subnebula or by accretional heating during the formation of Titan. These conclusions can be tested by further studies of abundances and isotope ratios in Titan's atmosphere, augmented by studies of comets. The possible similarity of carbon and nitrogen inventories on Titan to those on the inner planets makes this investigation particularly intriguing.
Assuntos
Atmosfera/química , Evolução Planetária , Metano/química , Nitrogênio/química , Saturno , Amônia/química , Argônio/química , Meio Ambiente Extraterreno , Gelo/análise , Isótopos , Meteoroides , Metano/análise , Nitrogênio/análise , Isótopos de Oxigênio , FotoquímicaRESUMO
We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is consistent with the depletion of condensable volatiles to great depths, which is attributed to local meteorology. Somewhat similar depletion of water may be present in the 5-micron bright regions of Saturn also. The supersolar abundances of heavy elements, particularly C and S in Jupiter's atmosphere and C in Saturn's, as well as the progressive increase of C from Jupiter to Saturn and beyond, tend to support the icy planetesimal model of the formation of the giant planets and their atmospheres. However, much work remains to be done, especially in the area of laboratory studies, including identification of possible new microwave absorbers, and modelling, in order to resolve the controversy surrounding the large discrepancy between Jupiter's global ammonia abundance, hence the nitrogen elemental ratio, derived from the earth-based microwave observations and that inferred from the analysis of the Galileo probe-orbiter radio attenuation data for the hotspot. We look forward to the observations from Cassini-Huygens spacecraft which are expected to result not only in a rich harvest of information for Saturn, but a better understanding of the formation of the giant planets and their atmospheres when these data are combined with those that exist for Jupiter.
Assuntos
Atmosfera/química , Evolução Planetária , Júpiter , Modelos Químicos , Saturno , Amônia/análise , Amônia/química , Astronomia/instrumentação , Atmosfera/análise , Elementos Químicos , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/química , Espectrometria de Massas/instrumentação , Micro-Ondas , Fotoquímica , Astronave/instrumentação , ÁguaRESUMO
The Galileo probe mass spectrometer determined the composition of the Jovian atmosphere for species with masses between 2 and 150 amu from 0.5 to 21.1 bars. This paper presents the results of analysis of some of the constituents detected: H2, He, Ne, Ar, Kr, Xe, CH4, NH3, H2O, H2S, C2 and C3 nonmethane hydrocarbons, and possibly PH3 and Cl. 4He/H2 in the Jovian atmosphere was measured to be 0.157 +/- 0.030. 13C/C12 was found to be 0.0108 +/- 0.0005, and D/H and 3He/4He were measured. Ne was depleted, < or = 0.13 times solar, Ar < or = 1.7 solar, Kr < or = 5 solar, and Xe < or = 5 solar. CH4 has a constant mixing ratio of (2.1 +/- 0.4) x 10(-3) (12C, 2.9 solar), where the mixing ratio is relative to H2. Upper limits to the H2O mixing ratio rose from 8 x 10(-7) at pressures <3.8 bars to (5.6 +/- 2.5) x 10(-5) (16O, 0.033 +/- 0.015 solar) at 11.7 bars and, provisionally, about an order of magnitude larger at 18.7 bars. The mixing ratio of H2S was <10(-6) at pressures less than 3.8 bars but rose from about 0.7 x 10(-5) at 8.7 bars to about 7.7 x 10(-5) (32S, 2.5 solar) above 15 bars. Only very large upper limits to the NH3 mixing ratio have been set at present. If PH3 and Cl were present, their mixing ratios also increased with pressure. Species were detected at mass peaks appropriate for C2 and C3 hydrocarbons. It is not yet clear which of these were atmospheric constituents and which were instrumentally generated. These measurements imply (1) fractionation of 4He, (2) a local, altitude-dependent depletion of condensables, probably because the probe entered the descending arm of a circulation cell, (3) that icy planetesimals made significant contributions to the volatile inventory, and (4) a moderate decrease in D/H but no detectable change in (D + 3He)/H in this part of the galaxy during the past 4.6 Gyr.
Assuntos
Atmosfera/química , Júpiter , Voo Espacial/instrumentação , Calibragem , Carbono/análise , Meio Ambiente Extraterreno , Gases/análise , Hélio/análise , Hidrocarbonetos/análise , Hidrogênio/análise , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Gases Nobres/análise , Astronave/instrumentaçãoRESUMO
A method is described for the rapid determination of microgram quantities of taurine or cysteic acid in the presence of relatively large amounts of other amino-acids. Dinitrophenylation of the sample followed by chloroform extraction yields an aqueous solution containing only DNP-taurine or DNP-cysteic acid, the absorbance of which gives a direct measure of these components.
RESUMO
The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.