Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930828

RESUMO

The development of new compounds to treat Chagas disease is imperative due to the adverse effects of current drugs and their low efficacy in the chronic phase. This study aims to investigate nitroisoxazole derivatives that produce oxidative stress while modifying the compounds' lipophilicity, affecting their ability to fight trypanosomes. The results indicate that these compounds are more effective against the epimastigote form of T. cruzi, with a 52 ± 4% trypanocidal effect for compound 9. However, they are less effective against the trypomastigote form, with a 15 ± 3% trypanocidal effect. Additionally, compound 11 interacts with a higher number of amino acid residues within the active site of the enzyme cruzipain. Furthermore, it was also found that the presence of a nitro group allows for the generation of free radicals; likewise, the large size of the compound enables increased interaction with aminoacidic residues in the active site of cruzipain, contributing to trypanocidal activity. This activity depends on the size and lipophilicity of the compounds. The study recommends exploring new compounds based on the nitroisoxazole skeleton, with larger substituents and lipophilicity to enhance their trypanocidal activity.


Assuntos
Isoxazóis , Tripanossomicidas , Trypanosoma cruzi , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Isoxazóis/química , Isoxazóis/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/antagonistas & inibidores , Relação Estrutura-Atividade , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Animais , Domínio Catalítico , Estrutura Molecular
2.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500438

RESUMO

3-formyl-2-quinolones have attracted the scientific community's attention because they are used as versatile building blocks in the synthesis of more complex compounds showing different and attractive biological activities. Using copper-catalyzed Chan-Lam coupling, we synthesized 32 new N-aryl-3-formyl-2-quinolone derivatives at 80 °C, in air and using inexpensive phenylboronic acids as arylating agents. 3-formyl-2-quinolones and substituted 3-formyl-2-quinolones can act as substrates, and among the products, the p-methyl derivative 9a was used as a substrate to obtain different derivatives such as alcohol, amine, nitrile, and chalcone.


Assuntos
Aminas , Cobre , Cobre/química , Catálise
3.
J Nat Prod ; 84(7): 1985-1992, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34213336

RESUMO

N-Arylcytisine derivatives are quite rare. We report here a practical methodology to obtain these compounds. Using the copper-catalyzed Chan-Lam coupling, we synthesized new N-arylcytisine derivatives at room temperature, in air and using inexpensive phenylboronic acids. Cytisine and 3,5-dihalocytisines can act as substrates, and among the products, the p-Br-derivative 2r was used as a substrate to obtain biaryl derivatives under Pd-coupling conditions; ester 2j was converted into its acid and amide derivatives using classical carbodiimide conditions. This shows that the Chan-Lam cross-coupling reaction can be included as a versatile synthetic tool in the derivatization of natural products.


Assuntos
Alcaloides/síntese química , Amidas/síntese química , Cobre/química , Azocinas/síntese química , Catálise , Estrutura Molecular , Quinolizinas/síntese química
4.
Molecules ; 26(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668529

RESUMO

Several antidepressants inhibit nicotinic acetylcholine receptors (nAChRs) in a non-competitive and voltage-dependent fashion. Here, we asked whether antidepressants with a different structure and pharmacological profile modulate the rat α7 nAChR through a similar mechanism by interacting within the ion-channel. We applied electrophysiological (recording of the ion current elicited by choline, ICh, which activates α7 nAChRs from rat CA1 hippocampal interneurons) and in silico approaches (homology modeling of the rat α7 nAChR, molecular docking, molecular dynamics simulations, and binding free energy calculations). The antidepressants inhibited ICh with the order: norfluoxetine ~ mirtazapine ~ imipramine < bupropion ~ fluoxetine ~ venlafaxine ~ escitalopram. The constructed homology model of the rat α7 nAChR resulted in the extracellular vestibule and the channel pore is highly negatively charged, which facilitates the permeation of cations and the entrance of the protonated form of antidepressants. Molecular docking and molecular dynamics simulations were carried out within the ion-channel of the α7 nAChR, revealing that the antidepressants adopt poses along the receptor channel, with slightly different binding-free energy values. Furthermore, the inhibition of ICh and free energy values for each antidepressant-receptor complex were highly correlated. Thus, the α7 nAChR is negatively modulated by a variety of antidepressants interacting in the ion-channel.


Assuntos
Antidepressivos/química , Antidepressivos/farmacologia , Canais Iônicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Antidepressivos/classificação , Colina/farmacologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ratos , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Termodinâmica
5.
Mol Biol Evol ; 31(12): 3250-65, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25193338

RESUMO

Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels.


Assuntos
Cálcio/metabolismo , Receptores Nicotínicos/genética , Acetilcolina/farmacologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Células Cultivadas , Galinhas , Evolução Molecular , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Agonistas Nicotínicos/farmacologia , Permeabilidade , Ratos , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Xenopus laevis
6.
Anesth Analg ; 121(5): 1369-77, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26280585

RESUMO

BACKGROUND: Positive allosteric modulators (PAMs) facilitate endogenous neurotransmission and/or enhance the efficacy of agonists without directly acting on the orthosteric binding sites. In this regard, selective α7 nicotinic acetylcholine receptor type II PAMs display antinociceptive activity in rodent chronic inflammatory and neuropathic pain models. This study investigates whether 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a new putative α7-selective type II PAM, attenuates experimental inflammatory and neuropathic pains in mice. METHODS: We tested the activity of PAM-2 after intraperitoneal administration in 3 pain assays: the carrageenan-induced inflammatory pain, the complete Freund adjuvant-induced inflammatory pain, and the chronic constriction injury-induced neuropathic pain in mice. We also tested whether PAM-2 enhanced the effects of the selective α7 agonist choline in the mouse carrageenan test given intrathecally. Because the experience of pain has both sensory and affective dimensions, we also evaluated the effects of PAM-2 on acetic acid-induced aversion by using the conditioned place aversion test. RESULTS: We observed that systemic administration of PAM-2 significantly reversed mechanical allodynia and thermal hyperalgesia in inflammatory and neuropathic pain models in a dose- and time-dependent manner without motor impairment. In addition, by attenuating the paw edema in inflammatory models, PAM-2 showed antiinflammatory properties. The antinociceptive effect of PAM-2 was inhibited by the selective competitive antagonist methyllycaconitine, indicating that the effect is mediated by α7 nicotinic acetylcholine receptors. Furthermore, PAM-2 enhanced the antiallodynic and antiinflammatory effects of choline, a selective α7 agonist, in the mouse carrageenan test. PAM-2 was also effective in reducing acetic acid-induced aversion in the conditioned place aversion assay. CONCLUSIONS: These findings suggest that the administration of PAM-2, a new α7-selective type II PAM, reduces the neuropathic and inflammatory pain sensory and affective behaviors in the mouse. Thus, this drug may have therapeutic applications in the treatment and management of chronic pain.


Assuntos
Acrilamidas/uso terapêutico , Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Furanos/uso terapêutico , Dor/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/fisiologia , Acrilamidas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Furanos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Dor/patologia
7.
Talanta ; 270: 125520, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147722

RESUMO

We report a nanohybrid material obtained by non-covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with the new ligand (((1E,1'E)-(naphthalene-2,3-diylbis(azaneylylidene))bis(methaneylylidenedene)) bis(4-hydroxy-3,1-phenylene))diboronic acid (SB-dBA), rationally designed to mimic some recognition properties of biomolecules like concanavalin A, for the development of electrochemical biosensors based on the use of glycobiomolecules as biorecognition element. We present, as a proof-of-concept, a hydrogen peroxide biosensor obtained by anchoring horseradish peroxidase (HRP) at a glassy carbon electrode (GCE) modified with the nanohybrid prepared by sonication of 2.0 mg mL-1 MWCNTs and 0.50 mg mL-1 SB-dBA in N,N-dimethyl formamide (DMF) for 30 min. The hydrogen peroxide biosensing was performed at -0.050 V in the presence of 5.0 × 10-4 M hydroquinone. The analytical characteristics of the resulting biosensor are the following: linear range between 0.175 µM and 6.12 µM, detection limit of 58 nM, and reproducibility of 2.0 % using the same nanohybrid (6 biosensors), and 9.0 % using three different nanohybrids. The sensor was successfully used to quantify hydrogen peroxide in enriched milk and human blood serum samples and in a commercial disinfector.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Ácidos Borônicos , Peróxido de Hidrogênio/química , Bases de Schiff , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Peroxidase do Rábano Silvestre/química , Eletrodos , Técnicas Eletroquímicas
8.
ACS Omega ; 9(17): 18786-18800, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708212

RESUMO

In this article, three unsymmetrical 7-(diethylamino)quinolone chalcones with D-π-A-D and D-π-A-π-D type push-pull molecular arrangements were synthesized via a Claisen-Schmidt reaction. Using 7-(diethylamino)quinolone and vanillin as electron donor (D) moieties, these were linked together through the α,ß-unsaturated carbonyl system acting as a linker and an electron acceptor (A). The photophysical properties were studied, revealing significant Stokes shifts and strong solvatofluorochromism caused by the ICT and TICT behavior produced by the push-pull effect. Moreover, quenching caused by the population of the TICT state in THF-H2O mixtures was observed, and the emission in the solid state evidenced a red shift compared to the emission in solution. These findings were corroborated by density functional theory (DFT) calculations employing the wb97xd/6-311G(d,p) method. The cytotoxic activity of the synthesized compounds was assessed on BHK-21, PC3, and LNCaP cell lines, revealing moderate activity across all compounds. Notably, compound 5b exhibited the highest activity against LNCaP cells, with an LC50 value of 10.89 µM. Furthermore, the compounds were evaluated for their potential as imaging agents in living prostate cells. The results demonstrated their favorable cell permeability and strong emission at 488 nm, positioning them as promising candidates for cancer cell imaging applications.

9.
Bioorg Med Chem Lett ; 23(1): 327-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23164712

RESUMO

Some synthetic 1-azabenzanthrones (7H-dibenzo[de,h]quinolin-7-ones) are weakly to moderately cytotoxic, suggesting that they might also show antiparasitic activity. We have now tested a small collection of these compounds in vitro against a chloroquine-resistant Plasmodium falciparum strain, comparing their cytotoxicity against normal human fibroblasts. Our results indicate that 5-methoxy-1-azabenzanthrone and its 2,3-dihydro analogue have low micromolar antiplasmodial activities and showed more than 10-fold selectivity against the parasite, indicating that the dihydro compound, in particular, might serve as a lead compound for further development.


Assuntos
Antimaláricos/síntese química , Compostos Aza/química , Benzo(a)Antracenos/química , Antimaláricos/química , Antimaláricos/toxicidade , Benzo(a)Antracenos/síntese química , Benzo(a)Antracenos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Humanos , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade
10.
ACS Chem Neurosci ; 14(16): 2876-2887, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37535446

RESUMO

The quinuclidine scaffold has been extensively used for the development of nicotinic acetylcholine receptor (nAChR) agonists, with hydrophobic substituents at position 3 of the quinuclidine framework providing selectivity for α7 nAChRs. In this study, six new ligands (4-9) containing a 3-(pyridin-3-yloxy)quinuclidine moiety (ether quinuclidine) were synthesized to gain a better understanding of the structural-functional properties of ether quinuclidines. To evaluate the pharmacological activity of these ligands, two-electrode voltage-clamp and single-channel recordings were performed. Only ligand 4 activated α7 nAChR. Ligands 5 and 7 had no effects on α7 nAChR, but ligands 6, 8, and 9 potentiated the currents evoked by ACh. Ligand 6 was the most potent and efficacious of the potentiating ligands, with an estimated EC50 for potentiation of 12.6 ± 3.32 µM and a maximal potentiation of EC20 ACh responses of 850 ± 120%. Ligand 6 increased the maximal ACh responses without changing the kinetics of the current responses. At the single-channel level, the potentiation exerted by ligand 6 was evidenced in the low micromolar concentration range by the appearance of prolonged bursts of channel openings. Furthermore, computational studies revealed the preference of ligand 6 for an intersubunit site in the transmembrane domain and highlighted some putative key interactions that explain the different profiles of the synthesized ligands. Notably, Met276 in the 15' position of the transmembrane domain 2 almost abolished the effects of ligand 6 when mutated to Leu. We conclude that ligand 6 is a novel type I positive allosteric modulator (PAM-I) of α7 nAChR.


Assuntos
Éter , Receptores Nicotínicos , Ligantes , Regulação Alostérica , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Agonistas Nicotínicos/farmacologia , Agonistas Nicotínicos/química , Etil-Éteres , Éteres , Receptores Nicotínicos/metabolismo
11.
Nat Prod Rep ; 29(5): 555-67, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22367109

RESUMO

Covering: up to the end of 2011. This review covers classical and modern structural modifications of the alkaloid, the more recent (since 2007) syntheses of cytisine and analogues, and the pharmacology of these compounds, with emphasis on their interactions with nicotinic receptors. 89 references are cited.


Assuntos
Alcaloides/farmacologia , Produtos Biológicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Alcaloides/síntese química , Alcaloides/química , Animais , Azocinas/síntese química , Azocinas/química , Azocinas/farmacologia , Humanos , Estrutura Molecular , Quinolizinas/síntese química , Quinolizinas/química , Quinolizinas/farmacologia , Ratos
12.
Bioorg Med Chem ; 20(12): 3719-27, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22609074

RESUMO

In this study thirty-three novel indole derivatives were designed and synthesized based on the structure of deformylflustrabromine B (1), a metabolite isolated from the marine bryozoan Flustra foliacea L. The syntheses were carried out using standard methodologies and in good yields. The molecules were tested for their affinities for the α4ß2(∗), α3ß4(∗), α7(∗) and (α1)(2)ß1γδ nicotinic acetylcholine receptor (nAChR) subtypes. Binding assays showed that, among these ligands, compound 7c exhibited the highest affinity with K(i)=136.1, 93.9 and 862.4nM for the α4ß2(∗), α3ß4(∗), and α7(∗) nAChRs subtypes, respectively. These results indicated that the indole core might be a useful scaffold for the development of new potent and selective nAChR ligands.


Assuntos
Indóis/síntese química , Indóis/farmacologia , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Briozoários/química , Bovinos , Indóis/química , Ligantes , Estrutura Molecular , Compostos de Amônio Quaternário/química , Ratos , Relação Estrutura-Atividade
13.
ACS Omega ; 6(15): 10333-10342, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34056186

RESUMO

A series of aromatic Schiff bases, featuring 7-diethylamino-coumarin and with five different substituents at an adjacent phenyl ring, were synthesized and characterized. With the aim of assessing the stability of these dyes in acidic medium, their hydrolysis reactions were kinetically studied in the absence and presence of the macrocycle cucurbit[7]uril (CB[7]). Our results are consistent with a model containing three different forms of substrates (un-, mono-, and diprotonated) and three parallel reaction pathways. The pK a values and the rate constants were estimated and discussed in terms of the presence of a hydroxyl group at the ortho position and electron-releasing groups on the phenyl ring of the dyes. The kinetic study in the presence of CB[7] led to two different behaviors. Promotion of the reaction by CB[7] was observed for the hydrolysis of the Schiff bases containing only one coordination site toward the macrocycle. Conversely, an inhibitor effect was observed for the hydrolysis of a Schiff base with two coordination sites toward CB[7]. The latter effect could be explained with a model as a function of a prototropic tautomeric equilibrium and the formation of a 2:1 host/guest complex, which prevents the attack of water. Therefore, the kinetic results demonstrated a supramolecular control of the macrocycle toward the reactivity and stability of 7-diethylaminocoumarin Schiff bases in acidic medium.

14.
Bioorg Med Chem Lett ; 19(1): 251-4, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19013796

RESUMO

This study reports the comparative molecular modeling, docking and dynamic simulations of human alpha9alpha10 nicotinic acetylcholine receptors complexed with acetylcholine, nicotine and alpha-conotoxin RgIA, using as templates the crystal structures of Aplysia californica and Lymnaea stagnalis acetylcholine binding proteins. The molecular dynamics simulations showed that Arg112 in the complementary alpha10(-) subunit, is a determinant for recognition in the site that binds small ligands. However, Glu195 in the principal alpha9(+), and Asp114 in the complementary alpha10(-) subunit, might confer the potency and selectivity to alpha-conotoxin RgIA when interacting with Arg7 and Arg9 of this ligand.


Assuntos
Modelos Moleculares , Receptores Nicotínicos/química , Acetilcolina/química , Aminoácidos , Animais , Aplysia/química , Sítios de Ligação , Simulação por Computador , Conotoxinas/química , Humanos , Lymnaea/química , Nicotina/química , Ligação Proteica
15.
Front Pharmacol ; 9: 744, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042682

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) is expressed in neuronal and non-neuronal cells and is involved in several physiopathological processes, and is thus an important drug target. We have designed and synthesized novel piperidine derivatives as α7 nAChR antagonists. Thus, we describe here a new series of 1-[2-(4-alkoxy-phenoxy-ethyl)]piperidines and 1-[2-(4-alkyloxy-phenoxy-ethyl)]-1-methylpiperidinium iodides (compounds 11a-11c and 12a-12c), and their actions on α7 nAChRs. The pharmacological activity of these compounds was studied in rat CA1 hippocampal interneurons by using the whole-cell voltage-clamp technique. Inhibition of the choline-induced current was less for 11a-11c than for the methylpiperidinium iodides 12a-12c and depended on the length of the aliphatic chain. Those compounds showing strong effects were studied further using molecular docking and molecular dynamics simulations. The strongest and non-voltage dependent antagonism was shown by 12a, which could establish cation-π interactions with the principal (+)-side and van der Waals interactions with the complementary (-)-side in the α7 nAChRs. Furthermore, compound 11a forms hydrogen bonds with residue Q115 of the complementary (-)-side through water molecules without forming cation-π interactions. Our findings have led to the establishment of a new family of antagonists that interact with the agonist binding cavity of the α7 nAChR, which represent a promising new class of compounds for the treatment of pathologies where these receptors need to be negatively modulated, including neuropsychiatric disorders as well as different types of cancer.

16.
RSC Adv ; 8(49): 27919-27923, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35542724

RESUMO

A regioselective, copper-catalyzed, one-pot aminoalkoxylation of styrenes using primary and secondary alcohols and three different iminoiodanes as alkoxy and nitrogen sources respectively, is reported. The ß-alkoxy-N-protected phenethylamines obtained were used to synthesise ß-alkoxy-N-benzylphenethylamines which are interesting new compounds that could act as possible neuronal ligands.

17.
ACS Chem Neurosci ; 8(10): 2168-2179, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28665105

RESUMO

A better comprehension on how different molecular components of the serotonergic system contribute to the adequate regulation of behaviors in animals is essential in the interpretation on how they are involved in neuropsychiatric and pathological disorders. It is possible to study these components in "simpler" animal models including the fly Drosophila melanogaster, given that most of the components of the serotonergic system are conserved between vertebrates and invertebrates. Here we decided to advance our understanding on how the serotonin plasma membrane transporter (SERT) contributes to serotonergic neurotransmission and behaviors in Drosophila. In doing this, we characterized for the first time a mutant for Drosophila SERT (dSERT) and additionally used a highly selective serotonin-releasing drug, 4-methylthioamphetamine (4-MTA), whose mechanism of action involves the SERT protein. Our results show that dSERT mutant animals exhibit an increased survival rate in stress conditions, increased basal motor behavior, and decreased levels in an anxiety-related parameter, centrophobism. We also show that 4-MTA increases the negative chemotaxis toward a strong aversive odorant, benzaldehyde. Our neurochemical data suggest that this effect is mediated by dSERT and depends on the 4-MTA-increased release of serotonin in the fly brain. Our in silico data support the idea that these effects are explained by specific interactions between 4-MTA and dSERT. In sum, our neurochemical, in silico, and behavioral analyses demonstrate the critical importance of the serotonergic system and particularly dSERT functioning in modulating several behaviors in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Mutação/genética , Serotoninérgicos/metabolismo , Serotoninérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
18.
Org Lett ; 18(12): 2998-3001, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27266654

RESUMO

Palladium catalysis enables the regioselective difunctionalization of alkenes using saccharin as the nitrogen source in the initial step of aminopalladation. Depending on the reaction conditions, diamination or aminooxygenation pathways can be accessed using hypervalent iodine reagents as the terminal oxidants. The aminooxygenation of allylic ethers originates from an unprecedented ambident behavior of saccharin. The participating palladium catalysts contain a palladium-saccharide unit. Two representative complexes of this type could be isolated and characterized.

20.
Neurosci Lett ; 607: 35-39, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26384784

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are widely distributed in the brain. Particularly α7-containing nAChRs, associated with several physiological roles and pathologies, are one of the most abundant. Here, we studied 2-(4-hexyloxybenzyl)-1-methylquinuclidin-1-ium iodide (designated as 8d), on ion currents elicited by choline, ICh, (Ch, a selective agonist for α7-containing nAChRs), recorded in interneurons from the stratum radiatum of the rat hippocampal CA1 region by using the whole-cell voltage-clamp technique. The 8d-concentration/Ch-response relationship exhibited high and low inhibitory affinities for α7-containing nAChRs, with IC50 values of 0.59 and 6.80 µM, respectively. Interestingly, 8d in a range of 3-10 µM exerted opposite effects: a short early potentiation and a long late inhibition of the ICh; and 8d alone elicited a non-decaying inward current. Furthermore, potentiation and inhibition of the ICh by 8d depended on the membrane potential, both being stronger at -20 than at -70 mV; indicating that 8d interacts with at least two sites into the ion channel/receptor complex: one for potentiating and another for inhibiting the α7-containing nAChRs. These results suggest that 8d may act as agonist, antagonist and positive modulator of α7-containing nAChRs in hippocampal interneurons.


Assuntos
Região CA1 Hipocampal/metabolismo , Interneurônios/metabolismo , Quinuclidinas/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Região CA1 Hipocampal/citologia , Colina/farmacologia , Técnicas In Vitro , Ratos Sprague-Dawley , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA