Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675214

RESUMO

Fused deposition modeling (FDM) is a rather new technology in the production of personalized dosage forms. The melting and printing of polymer-active pharmaceutical ingredient (API)-mixtures can be used to produce oral dosage forms with different dosage as well as release behavior. This process is utilized to increase the bioavailability of pharmaceutically relevant active ingredients that are poorly soluble in physiological medium by transforming them into solid amorphous dispersions (ASD). The release from such ASDs is expected to be faster and higher compared to the raw materials and thus enhance bioavailability. Printing directly from powder while forming ASDs from loperamide in Polyvinylalcohol was realized. Different techniques such as a change in infill and the incorporation of sorbitol as a plastisizer to change release patterns as well as a non-destructive way for the determination of API distribution were shown. By measuring the melt viscosities of the mixtures printed, a rheological model for the printer used is proposed.

2.
Int J Pharm X ; 6: 100222, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38162398

RESUMO

As performance of ternary amorphous solid dispersions (ASDs) depends on the solid-state characteristics and polymer mixing, a comprehensive understanding of synergistic interactions between the polymers in regard of dissolution enhancement of poorly soluble drugs and subsequent supersaturation stabilization is necessary. By choosing hot-melt extrusion (HME) and vacuum compression molding (VCM) as preparation techniques, we manipulated the phase behavior of ternary efavirenz (EFV) ASDs, comprising of either hydroxypropyl cellulose (HPC)-SSL or HPC-UL in combination with Eudragit® L 100-55 (EL 100-55) (50:50 polymer ratio), leading to single-phased (HME) and heterogeneous ASDs (VCM). Due to higher kinetic solid-state solubility of EFV in HPC polymers compared to EL 100-55, we visualized higher drug distribution into HPC-rich phases of the phase-separated ternary VCM ASDs via confocal Raman microscopy. Additionally, we observed differences in the extent of phase-separation in dependence on the selected HPC grade. As HPC-UL exhibited decisive lower melt viscosity than HPC-SSL, formation of partially miscible phases between HPC-UL and EL 100-55 was facilitated. Consequently, as homogeneously mixed polymer phases were required for optimal extent of solubility improvement, the manufacturing-dependent differences in dissolution performances were smaller using HPC-UL, instead of HPC-SSL, i.e. using HPC-UL was less demanding on shear stress provided by the process.

3.
Pharmaceutics ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678785

RESUMO

PROteolysis TArgeting Chimaeras (PROTACs) offer new opportunities in modern medicine by targeting proteins that are undruggable to classic inhibitors. However, due to their hydrophobic structure, PROTACs typically suffer from low solubility, and oral bioavailability remains challenging. At the same time, due to their investigative state, the drug supply is meager, leading to limited possibilities in terms of formulation development. Therefore, we investigated the solubility enhancement employing mini-scale formulations of amorphous solid dispersions (ASDs) and liquisolid formulations of the prototypic PROTAC ARCC-4. Based on preliminary supersaturation testing, HPMCAS (L Grade) and Eudragit® L 100-55 (EL 100-55) were demonstrated to be suitable polymers for supersaturation stabilization of ARCC-4. These two polymers were selected for preparing ASDs via vacuum compression molding (VCM), using drug loads of 10 and 20%, respectively. The ASDs were subsequently characterized with respect to their solid state via differential scanning calorimetry (DSC). Non-sink dissolution testing revealed that the physical mixtures (PMs) did not improve dissolution. At the same time, all ASDs enabled pronounced supersaturation of ARCC-4 without precipitation for the entire dissolution period. In contrast, liquisolid formulations failed in increasing ARCC-4 solubility. Hence, we demonstrated that ASD formation is a promising principle to overcome the low solubility of PROTACs.

4.
Int J Pharm X ; 4: 100115, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35368508

RESUMO

A current trend in the development of amorphous solid dispersions (ASDs) is the combination of two polymers for synergistic enhancement in supersaturation of poorly soluble drugs. We investigated the supersaturation potential of celecoxib (CXB) using combinations of methacrylic acid-ethyl acrylate copolymer (1:1) (EL 100-55) and hydroxypropyl cellulose (HPC) SSL. Initially, the supersaturation potential of single polymers and combinations in various ratios was assessed. While EL 100-55 and HPC SSL alone showed limited potential in solubility enhancement of CXB the combination of both polymers led to a boost of CXB solubility, whereby most promising results were obtained using a 50:50 polymer ratio. Binary and ternary CXB ASDs (10% drug load) were prepared via vacuum compressing molding (VCM) and hot melt extrusion (HME). ASDs were studied by exploring the miscibility and intermolecular interactions and tested for their dissolution performance. HPC SSL was identified to be a suitable precipitation inhibitor when added to a fast dissolving CXB: EL 100-55 ASD. Ternary ASDs showed even further dissolution improvement, when processed by HME. The combination of heat and shear stress led to a homogeneous and intimate mixture of EL 100-55 and HPC SSL, resulting in formation of synergistic interactions with pronounced impact on CXB supersaturation.

5.
Int J Pharm ; 603: 120648, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33915180

RESUMO

The influence of supersaturation and solubilization on oral absorption was assessed independently from the dissolution process for the non-formulated model drugs celecoxib and telmisartan. In vitro, physicochemical characterization and biphasic dissolution were used to characterize the supersaturation and solubilization effects of three water soluble polymers (copovidone, methylcellulose and Soluplus®) on the drugs. While celecoxib precipitated in a crystalline form resulting in pronounced stabilization of supersaturation, telmisartan precipitated as a highly energetic amorphous form and the potential of the polymers to enhance its solubility was subsequently, limited. In vivo, for the crystalline precipitating celecoxib, supersaturation and solubilization increased its oral bioavailability up to 10-fold. On the contrary, the amorphous precipitating telmisartan did not benefit from the limited stabilization in terms of oral exposure. Amongst all investigated in vitro tests the biphasic dissolution test was the most predictive in relation to supersaturation. However, for the potential micellar solubilization and the respective impact in the aqueous/organic interface, prediction accuracy of the biphasic dissolution test was limited in combination with Soluplus®. Despite the hetergeneous micellar distribution in vitro and permeation in vivo, the biphasic approach could clearly show the supersaturation potential on bioavailability (BA) for celecoxib on the one hand and the inferiority of supersaturation on BA for telmisartan.


Assuntos
Micelas , Polímeros , Disponibilidade Biológica , Trato Gastrointestinal , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA