Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
2.
Nat Immunol ; 17(7): 816-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27213690

RESUMO

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.


Assuntos
Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Proliferação de Células/genética , Citotoxicidade Imunológica/genética , Vigilância Imunológica , Interferon gama/metabolismo , Interleucina-15/metabolismo , Janus Quinase 1/metabolismo , Ativação Linfocitária/genética , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Neoplasias/imunologia , Transdução de Sinais/genética , Proteínas Supressoras da Sinalização de Citocina/genética
3.
Proc Natl Acad Sci U S A ; 120(47): e2302126120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37967215

RESUMO

Neurotransmitter receptors are increasingly recognized to play important roles in anti-tumor immunity. The expression of the ion channel N-methyl-D-aspartate receptor (NMDAR) on macrophages was reported, but the role of NMDAR on macrophages in the tumor microenvironment (TME) remains unknown. Here, we show that the activation of NMDAR triggered calcium influx and reactive oxygen species production, which fueled immunosuppressive activities in tumor-associated macrophages (TAMs) in the hepatocellular sarcoma and fibrosarcoma tumor settings. NMDAR antagonists, MK-801, memantine, and magnesium, effectively suppressed these processes in TAMs. Single-cell RNA sequencing analysis revealed that blocking NMDAR functionally and metabolically altered TAM phenotypes, such that they could better promote T cell- and Natural killer (NK) cell-mediated anti-tumor immunity. Treatment with NMDAR antagonists in combination with anti-PD-1 antibody led to the elimination of the majority of established preclinical liver tumors. Thus, our study uncovered an unknown role for NMDAR in regulating macrophages in the TME of hepatocellular sarcoma and provided a rationale for targeting NMDAR for tumor immunotherapy.


Assuntos
Neoplasias Hepáticas , Sarcoma , Humanos , Macrófagos Associados a Tumor , Processos Neoplásicos , Memantina , Microambiente Tumoral
4.
Eur J Immunol ; 50(6): 880-890, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32052406

RESUMO

NK cells are innate lymphocytes responsible for lysis of pathogen-infected and transformed cells. One of the major activating receptors required for target cell recognition is the NK group 2D (NKG2D) receptor. Numerous reports show the necessity of NKG2D for effective tumor immune surveillance. Further studies identified NKG2D as a key element allowing tumor immune escape. We here use a mouse model with restricted deletion of NKG2D in mature NKp46+ cells (NKG2DΔNK ). NKG2DΔNK NK cells develop normally, have an unaltered IFN-γ production but kill tumor cell lines expressing NKG2D ligands (NKG2DLs) less efficiently. However, upon long-term stimulation with IL-2, NKG2D-deficient NK cells show increased levels of the lytic molecule perforin. Thus, our findings demonstrate a dual function of NKG2D for NK cell cytotoxicity; while NKG2D is a crucial trigger for cytotoxicity of tumor cells expressing activating ligands it is also capable to limit perforin production in IL-2 activated NK cells.


Assuntos
Interleucina-2/farmacologia , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Animais , Linhagem Celular Tumoral , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/genética , Interferon gama/genética , Interferon gama/imunologia , Células Matadoras Naturais/patologia , Camundongos , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Proteínas Citotóxicas Formadoras de Poros/genética
5.
Blood ; 132(7): 694-706, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-29907599

RESUMO

Inhibition of Janus-kinase 1/2 (JAK1/2) is a mainstay to treat myeloproliferative neoplasms (MPN). Sporadic observations reported the co-incidence of B-cell non-Hodgkin lymphomas during treatment of MPN with JAK1/2 inhibitors. We assessed 626 patients with MPN, including 69 with myelofibrosis receiving JAK1/2 inhibitors for lymphoma development. B-cell lymphomas evolved in 4 (5.8%) of 69 patients receiving JAK1/2 inhibition compared with 2 (0.36%) of 557 with conventional treatment (16-fold increased risk). A similar 15-fold increase was observed in an independent cohort of 929 patients with MPN. Considering primary myelofibrosis only (N = 216), 3 lymphomas were observed in 31 inhibitor-treated patients (9.7%) vs 1 (0.54%) of 185 control patients. Lymphomas were of aggressive B-cell type, extranodal, or leukemic with high MYC expression in the absence of JAK2 V617F or other MPN-associated mutations. Median time from initiation of inhibitor therapy to lymphoma diagnosis was 25 months. Clonal immunoglobulin gene rearrangements were already detected in the bone marrow during myelofibrosis in 16.3% of patients. Lymphomas occurring during JAK1/2 inhibitor treatment were preceded by a preexisting B-cell clone in all 3 patients tested. Sequencing verified clonal identity in 2 patients. The effects of JAK1/2 inhibition were mirrored in Stat1-/- mice: 16 of 24 mice developed a spontaneous myeloid hyperplasia with the concomitant presence of aberrant B cells. Transplantations of bone marrow from diseased mice unmasked the outgrowth of a malignant B-cell clone evolving into aggressive B-cell leukemia-lymphoma. We conclude that JAK/STAT1 pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas. Detection of a preexisting B-cell clone may identify individuals at risk.


Assuntos
Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Linfoma de Células B/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Mielofibrose Primária/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Linfoma de Células B/enzimologia , Linfoma de Células B/genética , Linfoma de Células B/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Mielofibrose Primária/enzimologia , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Estudos Retrospectivos
6.
Langmuir ; 36(46): 13804-13816, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33171051

RESUMO

Thermal decomposition is a promising route for the synthesis of metal oxide nanoparticles because size and morphology can be tuned by minute control of the reaction variables. We synthesized CoO nanooctahedra with diameters of ∼48 nm and a narrow size distribution. Full control over nanoparticle size and morphology could be obtained by controlling the reaction time, surfactant ratio, and reactant concentrations. We show that the particle size does not increase monotonically with time or surfactant concentration but passes through minima or maxima. We unravel the critical role of the surfactants in nucleation and growth and rationalize the observed experimental trends in accordance with simulation experiments. The as-synthesized CoO nanooctahedra exhibit superior electrocatalytic activity with long-term stability during oxygen evolution. The morphology of the CoO particles controls the electrocatalytic reaction through the distinct surface sites involved in the oxygen evolution reaction.

7.
Clin Immunol ; 177: 50-59, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26476139

RESUMO

Natural killer (NK) cells play a critical role in host immune responses against tumor growth and metastasis. The numerous mechanisms used by NK cells to regulate and control cancer metastasis include interactions with tumor cells via specific receptors and ligands as well as direct cytotoxicity and cytokine-induced effector mechanisms. NK cells also play a role in tumor immunosurveillance and inhibition of metastases formation by recognition and killing of tumor cells. In this review, we provide an overview of the molecular mechanisms of NK cell responses against tumor metastases and discuss multiple strategies by which tumors evade NK cell-mediated surveillance. With an increasing understanding of the molecular mechanisms driving NK cell activity, there is a growing potential for the development of new cancer immunotherapies. Here we provide a historical background on NK cell-based therapies and discuss the implications of recent and ongoing clinical trials using novel NK cell-based immunotherapy.


Assuntos
Células Matadoras Naturais/imunologia , Metástase Neoplásica/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Animais , Citocinas/imunologia , Humanos , Ligantes , Células Neoplásicas Circulantes , Receptores de Células Matadoras Naturais/imunologia
8.
Blood ; 124(15): 2370-9, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25185262

RESUMO

The members of the signal transducer and activator of transcription (STAT) family of transcription factors modulate the development and function of natural killer (NK) cells. NK cell-mediated tumor surveillance is particularly important in the body's defense against hematological malignancies such as leukemia. STAT3 inhibitors are currently being developed, although their potential effects on NK cells are not clear. We have investigated the function of STAT3 in NK cells with Stat3(Δ/Δ)Ncr1-iCreTg mice, whose NK cells lack STAT3. In the absence of STAT3, NK cells develop normally and in normal numbers, but display alterations in the kinetics of interferon-γ (IFN-γ) production. We report that STAT3 directly binds the IFN-γ promoter. In various in vivo models of hematological diseases, loss of STAT3 in NK cells enhances tumor surveillance. The reduced tumor burden is paralleled by increased expression of the activating receptor DNAM-1 and the lytic enzymes perforin and granzyme B. Our findings imply that STAT3 inhibitors will stimulate the cytolytic activity of NK cells against leukemia, thereby providing an additional therapeutic benefit.


Assuntos
Vigilância Imunológica , Células Matadoras Naturais/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Antígenos Ly/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/farmacologia , Modelos Animais de Doenças , Granzimas/metabolismo , Vigilância Imunológica/efeitos dos fármacos , Integrases/metabolismo , Interferon gama/biossíntese , Interferon gama/genética , Intestinos/patologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Cinética , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Perforina/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Baço/patologia
9.
FASEB J ; 28(8): 3540-51, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24760752

RESUMO

Advanced systemic mastocytosis (SM) is an aggressive hematopoietic neoplasm with poor prognosis and short survival times. So far, no curative therapy is available for affected patients. We have identified the cell surface antigen CD52 (CAMPATH-1) as a molecular target expressed abundantly on the surface of primary neoplastic mast cells (MCs) in patients with advanced SM. In contrast, neoplastic MCs of patients with indolent SM and normal MCs expressed only low levels or did not express CD52. To study the mechanisms of CD52 expression and the value of this antigen as a potential therapeutic target, we generated a human MC cell line, designated MCPV-1, by lentiviral immortalization of cord blood-derived MC progenitor cells. Functional studies revealed that activated RAS profoundly promotes surface expression of CD52. The CD52-targeting antibody alemtuzumab induced cell death in CD52(+) primary neoplastic MCs obtained from patients with SM as well as in MCPV-1 cells. NSG mice xenotransplanted with MCPV-1 cells survived significantly longer after treatment with alemtuzumab (median survival: 31 d untreated vs. 46 d treated; P=0.0012). We conclude that CD52 is a novel marker and potential therapeutic target in neoplastic MCs in patients with advanced SM.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD/análise , Antígenos de Neoplasias/análise , Antineoplásicos/uso terapêutico , Glicoproteínas/análise , Mastocitose Sistêmica/metabolismo , Terapia de Alvo Molecular , Adulto , Idoso , Alemtuzumab , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD/imunologia , Antígenos de Neoplasias/imunologia , Antineoplásicos/farmacologia , Antígeno CD52 , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Sangue Fetal/citologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/fisiologia , Genes ras , Glicoproteínas/imunologia , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Mastócitos/metabolismo , Mastocitose Sistêmica/tratamento farmacológico , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas p21(ras) , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética , Proteínas ras/fisiologia
10.
Biomed Pharmacother ; 177: 117057, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38976957

RESUMO

Cyclotides are head-to-tail cyclized peptides with a unique cystine-knot motif. Their structure provides exceptional resistance against enzymatic, chemical, or thermal degradation compared to other peptides. Peptide-based therapeutics promise high specificity, selectivity and lower immunogenicity, making them safer alternatives to small molecules or large biologicals. Cyclotides were researched due to their anti-cancer properties by inducing apoptosis in tumor cells in the past, but the impact of cyclotides on cytotoxic immune cells was poorly studied. Natural Killer (NK) cells are cytotoxic innate lymphoid cells and play an important role in the defense against infected, stressed and transformed cells. NK cells do not need prior sensitization and act in an antigen independent manner, holding promising potential in the field of immunotherapy. To investigate the effect of immunomodulatory cyclotides on NK cells, we evaluated several peptide-enriched plant extracts on NK cell mediated cytotoxicity. We observed that the extract samples derived from Carapichea ipecacuanha (Brot.) L. Andersson augments the killing potential of mouse NK cells against different tumor targets in vitro. Subsequent isolation of cyclotides from C. ipecacuanha extracts led to the identification of a primary candidate that enhances cytotoxicity of both mouse and human NK cells. The augmented killing is facilitated by the increased degranulation capacity of NK cells. In addition, we noted a direct toxic effect of caripe 8 on tumor cells, suggesting a dual therapeutic potential in cancer treatment. This study offers novel insights how natural peptides can influence NK cell cytotoxicity. These pre-clinical findings hold significant promise for advancing current immunotherapeutic approaches.


Assuntos
Ciclotídeos , Células Matadoras Naturais , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Animais , Ciclotídeos/farmacologia , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Camundongos , Humanos , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Camundongos Endogâmicos C57BL , Antineoplásicos/farmacologia
11.
Channels (Austin) ; 18(1): 2361416, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38836323

RESUMO

Alterations in ion channel expression and function known as "electrical remodeling" contribute to the development of hypertrophy and to the emergence of arrhythmias and sudden cardiac death. However, comparing current density values - an electrophysiological parameter commonly utilized to assess ion channel function - between normal and hypertrophied cells may be flawed when current amplitude does not scale with cell size. Even more, common routines to study equally sized cells or to discard measurements when large currents do not allow proper voltage-clamp control may introduce a selection bias and thereby confound direct comparison. To test a possible dependence of current density on cell size and shape, we employed whole-cell patch-clamp recording of voltage-gated sodium and calcium currents in Langendorff-isolated ventricular cardiomyocytes and Purkinje myocytes, as well as in cardiomyocytes derived from trans-aortic constriction operated mice. Here, we describe a distinct inverse relationship between voltage-gated sodium and calcium current densities and cell capacitance both in normal and hypertrophied cells. This inverse relationship was well fit by an exponential function and may be due to physiological adaptations that do not scale proportionally with cell size or may be explained by a selection bias. Our study emphasizes the need to consider cell size bias when comparing current densities in cardiomyocytes of different sizes, particularly in hypertrophic cells. Conventional comparisons based solely on mean current density may be inadequate for groups with unequal cell size or non-proportional current amplitude and cell size scaling.


Assuntos
Cardiomegalia , Tamanho Celular , Miócitos Cardíacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Camundongos , Masculino , Técnicas de Patch-Clamp
12.
Front Immunol ; 15: 1374068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034990

RESUMO

Acute myeloid leukemia (AML) is a heterogenous disease characterized by the clonal expansion of myeloid progenitor cells. Despite recent advancements in the treatment of AML, relapse still remains a significant challenge, necessitating the development of innovative therapies to eliminate minimal residual disease. One promising approach to address these unmet clinical needs is natural killer (NK) cell immunotherapy. To implement such treatments effectively, it is vital to comprehend how AML cells escape the NK-cell surveillance. Signal transducer and activator of transcription 3 (STAT3), a component of the Janus kinase (JAK)-STAT signaling pathway, is well-known for its role in driving immune evasion in various cancer types. Nevertheless, the specific function of STAT3 in AML cell escape from NK cells has not been deeply investigated. In this study, we unravel a novel role of STAT3 in sensitizing AML cells to NK-cell surveillance. We demonstrate that STAT3-deficient AML cell lines are inefficiently eliminated by NK cells. Mechanistically, AML cells lacking STAT3 fail to form an immune synapse as efficiently as their wild-type counterparts due to significantly reduced surface expression of intercellular adhesion molecule 1 (ICAM-1). The impaired killing of STAT3-deficient cells can be rescued by ICAM-1 overexpression proving its central role in the observed phenotype. Importantly, analysis of our AML patient cohort revealed a positive correlation between ICAM1 and STAT3 expression suggesting a predominant role of STAT3 in ICAM-1 regulation in this disease. In line, high ICAM1 expression correlates with better survival of AML patients underscoring the translational relevance of our findings. Taken together, our data unveil a novel role of STAT3 in preventing AML cells from escaping NK-cell surveillance and highlight the STAT3/ICAM-1 axis as a potential biomarker for NK-cell therapies in AML.


Assuntos
Molécula 1 de Adesão Intercelular , Células Matadoras Naturais , Leucemia Mieloide Aguda , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/metabolismo , Humanos , Leucemia Mieloide Aguda/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Vigilância Imunológica , Linhagem Celular Tumoral , Evasão Tumoral , Transdução de Sinais , Citotoxicidade Imunológica
13.
Nat Commun ; 15(1): 3745, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702304

RESUMO

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Assuntos
Diferenciação Celular , Variações do Número de Cópias de DNA , Proteína Proto-Oncogênica N-Myc , Crista Neural , Neuroblastoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Feminino , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Aberrações Cromossômicas , Células-Tronco Embrionárias Humanas/metabolismo , Transcriptoma , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
14.
Blood ; 118(17): 4635-45, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21878673

RESUMO

In Eµ-myc transgenic animals lymphoma formation requires additional genetic alterations, which frequently comprise loss of p53 or overexpression of BCL-2. We describe that the nature of the "second hit" affects the ability of the immune system to contain lymphoma development. Tumors with disrupted p53 signaling killed the host more rapidly than BCL-2 overexpressing ones. Relaxing immunologic control, using Tyk2(-/-) mice or by Ab-mediated depletion of CD8(+) T or natural killer (NK) cells accelerated formation of BCL-2-overexpressing lymphomas but not of those lacking p53. Most strikingly, enforced expression of BCL-2 prolonged disease latency in the absence of p53, whereas blocking p53 function in BCL-2-overexpressing tumors failed to accelerate disease. This shows that blocking apoptosis in p53-deficient cells by enforcing BCL-2 expression can mitigate disease progression increasing the "immunologic visibility." In vitro cytotoxicity assays confirmed that high expression of BCL-2 protein facilitates NK and T cell-mediated killing. Moreover, we found that high BCL-2 expression is accompanied by significantly increased levels of the NKG2D ligand MULT1, which may account for the enhanced killing. Our findings provide first evidence that the nature of the second hit affects tumor immunosurveillance in c-MYC-driven lymphomas and define a potential shortcoming of antitumor therapies targeting BCL-2.


Assuntos
Epistasia Genética/imunologia , Genes myc/fisiologia , Vigilância Imunológica/genética , Linfoma/genética , Mutação/fisiologia , Animais , Transformação Celular Neoplásica/genética , Células Cultivadas , Progressão da Doença , Epistasia Genética/fisiologia , Genes bcl-2/fisiologia , Genes p53/fisiologia , Linfoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , TYK2 Quinase/genética , Evasão Tumoral/genética
15.
Nanoscale ; 15(11): 5209-5218, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36285584

RESUMO

Designing the size, morphology and interfacial charge of catalyst particles at the nanometer scale can enhance their performance. We demonstrate this with nanoceria which is a functional mimic of haloperoxidases, a group of enzymes that halogenates organic substrates in the presence of hydrogen peroxide. These reactions in aqueous solution require the presence of H2O2. We demonstrate in situ generation of H2O2 from a CaO2 reservoir in polyether sulfone (PES) and poly(vinylidene fluoride) (PVDF) polymer beads, which circumvents the external addition of H2O2 and expands the scope of applications for haloperoxidase reactions. The catalytic activity of nanoceria was enhanced significantly by Bi3+ substitution. Bi-doped mesoporous ceria nanoparticles with tunable surface properties were prepared by changing the reaction time. Increasing reaction time increases the surface area SBET of the mesoporous Bi0.2Ce0.8O1.9 nanoparticles and the Ce3+/Ce4+ ratio, which is associated with the ζ-potential. In this way, the catalytic activity of nanoceria could be tuned in a straightforward manner. H2O2 required for the reaction was released steadily over a long period of time from a CaO2 storage depot incorporated in polyether sulfone (PES) and poly(vinylidene fluoride) (PVDF) beads together with Bi0.2Ce0.8O1.9 particles, which may be used as precision fillers and templates for biological applications. The spheres are prepared as a dry powder with no surface functionalization or coatings. They are inert, chemically stable, and safe for handling. The feasibility of this approach was demonstrated using a haloperoxidase assay.

16.
Front Cardiovasc Med ; 10: 1242763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795481

RESUMO

Introduction: Transverse-aortic constriction (TAC) operation is a widely used animal model to induce hypertrophy and heart failure through left-ventricular pressure overload. In mice, the cardiac response to TAC exhibits considerable variability influenced by factors such as strain, sub-strain, age, sex and vendor. Methods: To investigate the impact of suture material (silk versus prolene) and size (6-0 versus 7-0) on the TAC-induced phenotype, we performed surgeries on male C57BL6/N mice at 9 weeks of age defining the aortic constriction by a 27G needle, thereby employing most frequently used methodological settings. The mice were randomly assigned into four separate groups, 6-0 silk, 7-0 silk, 6-0 prolene and 7-0 prolene (10 mice per group). Echocardiography was conducted before TAC and every 4 weeks thereafter to monitor the development of heart failure. Repeated measures correlation analysis was employed to compare disease progression among the different groups. Results: Our findings reveal a significant influence of the chosen suture material on TAC outcomes. Mice operated with prolene showed increased mortality, slower body weight gain, faster left-ventricular mass increase, and a faster decline in left-ventricular ejection fraction, fractional shortening and aortic pressure gradient compared to silk-operated mice. Moreover, despite non significant, using thinner suture threads (7-0) tended to result in a more severe phenotype compared to thicker threads (6-0) across all tested parameters. Discussion: Collectively, our results highlight the importance of suture material selection in determining the cardiac phenotype induced by TAC and emphasize the need to consider this factor when comparing data across different research laboratories.

17.
Cancer Lett ; 554: 216028, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462556

RESUMO

Ewing sarcoma is a pediatric bone and soft tissue cancer with an urgent need for new therapies to improve disease outcome. To identify effective drugs, phenotypic drug screening has proven to be a powerful method, but achievable throughput in mouse xenografts, the preclinical Ewing sarcoma standard model, is limited. Here, we explored the use of xenografts in zebrafish for high-throughput drug screening to discover new combination therapies for Ewing sarcoma. We subjected xenografts in zebrafish larvae to high-content imaging and subsequent automated tumor size analysis to screen single agents and compound combinations. We identified three drug combinations effective against Ewing sarcoma cells: Irinotecan combined with either an MCL-1 or an BCL-XL inhibitor and in particular dual inhibition of the anti-apoptotic proteins MCL-1 and BCL-XL, which efficiently eradicated tumor cells in zebrafish xenografts. We confirmed enhanced efficacy of dual MCL-1/BCL-XL inhibition compared to single agents in a mouse PDX model. In conclusion, high-content screening of small compounds on Ewing sarcoma zebrafish xenografts identified dual MCL-1/BCL-XL targeting as a specific vulnerability and promising therapeutic strategy for Ewing sarcoma, which warrants further investigation towards clinical application.


Assuntos
Sarcoma de Ewing , Humanos , Animais , Camundongos , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Peixe-Zebra/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Avaliação Pré-Clínica de Medicamentos , Xenoenxertos , Apoptose , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Linhagem Celular Tumoral
18.
Nanoscale ; 14(37): 13639-13650, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36073499

RESUMO

Designing the shape and size of catalyst particles, and their interfacial charge, at the nanometer scale can radically change their performance. We demonstrate this with ceria nanoparticles. In aqueous media, nanoceria is a functional mimic of haloperoxidases, a group of enzymes that oxidize organic substrates, or of peroxidases that can degrade reactive oxygen species (ROS) such as H2O2 by oxidizing an organic substrate. We show that the chemical activity of CeO2-x nanoparticles in haloperoxidase- and peroxidase-like reactions scales with their active surface area, their surface charge, given by the ζ-potential, and their surface defects (via the Ce3+/Ce4+ ratio). Haloperoxidase-like reactions are controlled through the ζ-potential as they involve the adsorption of charged halide anions to the CeO2 surface, whereas peroxidase-like reactions without charged substrates are controlled through the specific surface area SBET. Mesoporous CeO2-x particles, with large surface areas, were prepared via template-free hydrothermal reactions and characterized by small-angle X-ray scattering. Surface area, ζ-potential and the Ce3+/Ce4+ ratio are controlled in a simple and predictable manner by the synthesis time of the hydrothermal reaction as demonstrated by X-ray photoelectron spectroscopy, sorption and ζ-potential measurements. The surface area increased with synthesis time, whilst the Ce3+/Ce4+ ratio scales inversely with decreasing ζ-potential. In this way the catalytic activity of mesoporous CeO2-x particles could be tailored selectively for haloperoxidase- and peroxidase-like reactions. The ease of tuning the surface properties of mesoporous CeO2x particles by varying the synthesis time makes the synthesis a powerful general tool for the preparation of nanocatalysts according to individual needs.

19.
ACS Nano ; 16(10): 16091-16108, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36174231

RESUMO

Bacterial biofilm formation is a huge problem in industry and medicine. Therefore, the discovery of anti-biofilm agents may hold great promise. Biofilm formation is usually a consequence of bacterial cell-cell communication, a process called quorum sensing (QS). CeO2 nanocrystals (NCs) have been established as haloperoxidase (HPO) mimics and ecologically beneficial biofilm inhibitors. They were suggested to interfere with QS, a mechanism termed quorum quenching (QQ), but their molecular mechanism remained elusive. We show that CeO2 NCs are effective QQ agents, inactivating QS signals by bromination. Catalytic bromination of 3-oxo-C12-AHL a QS signaling compound used by Pseudomonas aeruginosa, was detected in the presence of CeO2 NCs, bromide ions, and hydrogen peroxide. Brominated acyl-homoserine lactones (AHLs) no longer act as QS signals but were not detected in the bacterial cultures. Externally added brominated AHLs also disappeared in P. aeruginosa cultures within minutes of their addition, indicating that they are rapidly degraded by the bacteria. Moreover, we detected the catalytic bromination of 2-heptyl-1-hydroxyquinolin-4(1H)-one (HQNO), a multifunctional non-AHL QS signal from P. aeruginosa with antibacterial and algicidal properties controlling the expression of many virulence genes. Brominated HQNO was not degraded by the bacteria in vivo. The repression of the Pseudomonas quinolone signal (PQS) production and biofilm formation in P. aeruginosa through the catalytic formation of Br-HQNO on surfaces with coatings containing CeO2 enzyme mimics validates the non-toxic strategy for the development of anti-infectives.


Assuntos
Acil-Butirolactonas , Nanopartículas , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacologia , Peróxido de Hidrogênio/farmacologia , Brometos , Biofilmes , Percepção de Quorum , Pseudomonas aeruginosa , Bactérias/metabolismo , Antibacterianos/farmacologia
20.
Oral Oncol ; 124: 105634, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844042

RESUMO

BACKGROUND: Taxane-based checkpoint inhibitor combination therapy might improve the outcome in recurrent/metastatic (R/M) head and neck cancer (HNSCC) patients. Thus, we investigated the efficacy and safety of docetaxel (DTX) plus pembrolizumab (P) in a prospective phase I/II trial. METHODS: Platinum-resistant R/M HNSCC patients received DTX 75 mg/m^2 plus P 200 mg for up to six cycles followed by P maintenance therapy. The primary endpoint was overall response rate (ORR) and safety. Secondary endpoints comprised disease control rate (DCR), overall survival (OS) and progression free survival (PFS). RESULTS: Twenty-two patients were enrolled. Nine patients (40.9%) had a primary tumor in the oropharynx, 8 (36.4%) in the oral cavity, 3 (13.6%) in the hypopharynx and 2 (9.1%) in the larynx. The ORR was 22.7% (95% CI 10.1%-43.4%) and one (4.5%) complete response was achieved. The DCR was 54.6% (95% 34.7%-73.1%). The median PFS was 5.8 months (95% CI 2.7-11.6) and the median OS 21.3 months (95% CI 6.3-31.1). The 1-year PFS and OS rates were 27.3% and 68.2%, respectively. While the most frequent adverse event (AE) was myelosuppression, which was reported in all 22 patients, 3 (13.6%) patients experienced grade 3 febrile neutropenia. The most common immune-related AEs were grade skin rash (40.9%) and hypothyroidism (40.9%). One patient (4.5%) experienced grade 5 immune thrombocytopenia. CONCLUSION: DXT in combination with P shows promising activity accompanied with a manageable side effect profile in pre-treated R/M HNSCC patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Recidiva Local de Neoplasia , Anticorpos Monoclonais Humanizados , Docetaxel , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Recidiva Local de Neoplasia/patologia , Estudos Prospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA