Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mediators Inflamm ; 2017: 5186904, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28839349

RESUMO

Profound loss of CD4+ T cells, progressive impairment of the immune system, inflammation, and sustained immune activation are the characteristics of human immunodeficiency virus-1 (HIV-1) infection. Innate immune responses respond immediately from the day of HIV infection, and a thorough understanding of the interaction between several innate immune cells and HIV-1 is essential to determine to what extent those cells play a crucial role in controlling HIV-1 in vivo. Defensins, divided into the three subfamilies α-, ß-, and θ-defensins based on structure and disulfide linkages, comprise a critical component of the innate immune response and exhibit anti-HIV-1 activities and immunomodulatory capabilities. In humans, only α- and ß-defensins are expressed in various tissues and have broad impacts on HIV-1 transmission, replication, and disease progression. θ-defensins have been identified as functional peptides in Old World monkeys, but not in humans. Instead, θ-defensins exist only as pseudogenes in humans, chimpanzees, and gorillas. The use of the synthetic θ-defensin peptide "retrocyclin" as an antiviral therapy was shown to be promising, and further research into the development of defensin-based HIV-1 therapeutics is needed. This review focuses on the role of defensins in HIV-1 pathogenesis and highlights future research efforts that warrant investigation.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/patologia , Animais , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Defensinas/metabolismo , Feminino , Fibrinogênio/metabolismo , Humanos , Masculino
2.
Dis Aquat Organ ; 120(2): 143-50, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27409237

RESUMO

The red swamp crayfish Procambarus clarkii represents an important aquaculture species responsible for over half of all commercial aquaculture profits in Louisiana, USA. White spot syndrome virus (WSSV) is highly pathogenic in crustacean species and induces mass mortality in aquaculture operations worldwide. Natural outbreaks of WSSV occur yearly in cultured populations of crayfish in Louisiana. The goal of this study was to better understand the infectivity of WSSV in P. clarkii, by determining the minimum lethal dose necessary to initiate infection and to measure the resulting cumulative mortality following infection with different doses. A real time quantitative PCR (qPCR) method was used to detect WSSV in DNA extracted from gill tissue to ensure P. clarkii study populations were WSSV-free before the start of trials. Viable viral particles were isolated from naturally infected P. clarkii gill tissue and quantified using a novel digital PCR approach. Three infectivity trials were performed, and WSSV inocula were created by serial dilution, generating 5 treatments per trial. Five crayfish (weighing ~25 g) per dilution per trial received viral inoculations. Mortality was monitored daily for the duration of the trial in order to construct a median lethal dose (LD50) curve, and probit regression analysis was used to determine LD50 concentrations of viral particles. Knowledge of the infectivity of WSSV in native crayfish populations is of critical importance to the management of the commercial crayfish aquaculture industry in Louisiana. This is the first study to investigate the infectivity and to determine the LD50 of the Louisiana strain of WSSV in native crayfish.


Assuntos
Astacoidea/virologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Interações Hospedeiro-Patógeno
3.
Cells ; 10(4)2021 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916615

RESUMO

Transforming growth factor-ß signaling (TGF-ß) maintains a balanced physiological function including cell growth, differentiation, and proliferation and regulation of immune system by modulating either SMAD2/3 and SMAD7 (SMAD-dependent) or SMAD-independent signaling pathways under normal conditions. Increased production of TGF-ß promotes immunosuppression in Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection. However, the cellular source and downstream events of increased TGF-ß production that attributes to its pathological manifestations remain unknown. Here, we have shown increased production of TGF-ß in a majority of intestinal CD3-CD20-CD68+ cells from acute and chronically SIV infected rhesus macaques, which negatively correlated with the frequency of jejunum CD4+ T cells. No significant changes in intestinal TGF-ß receptor II expression were observed but increased production of the pSMAD2/3 protein and SMAD3 gene expression in jejunum tissues that were accompanied by a downregulation of SMAD7 protein and gene expression. Enhanced TGF-ß production by intestinal CD3-CD20-CD68+ cells and increased TGF-ß/SMAD-dependent signaling might be due to a disruption of a negative feedback loop mediated by SMAD7. This suggests that SIV infection impacts the SMAD-dependent signaling pathway of TGF-ß and provides a potential framework for further study to understand the role of viral factor(s) in modulating TGF-ß production and downregulating SMAD7 expression in SIV. Regulation of mucosal TGF-ß expression by therapeutic TGF-ß blockers may help to create effective antiviral mucosal immune responses.


Assuntos
Intestinos/virologia , Transdução de Sinais , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Progressão da Doença , Regulação para Baixo , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Intestinos/patologia , Macaca mulatta , Modelos Biológicos , Fosforilação , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Regulação para Cima , Carga Viral
4.
Front Immunol ; 12: 769990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887863

RESUMO

Epithelial cell injury and impaired epithelial regeneration are considered key features in HIV pathogenesis and contribute to HIV-induced generalized immune activation. Understanding the molecular mechanisms underlying the disrupted epithelial regeneration might provide an alternative approach for the treatment of HIV-mediated enteropathy and immune activation. We have observed a significant increased presence of α defensin5+ (HD5) Paneth cells and proliferating Ki67+ epithelial cells as well as decreased expression of E-cadherin expression in epithelial cells during SIV infection. SIV infection did not significantly influence the frequency of LGR5+ stem cells, but the frequency of HD5+ cells was significantly higher compared to uninfected controls in jejunum. Our global transcriptomics analysis of enteroids provided novel information about highly significant changes in several important pathways like metabolic, TCA cycle, and oxidative phosphorylation, where the majority of the differentially expressed genes were downregulated in enteroids grown from chronically SIV-infected macaques compared to the SIV-uninfected controls. Despite the lack of significant reduction in LGR5+ stem cell population, the dysregulation of several intestinal stem cell niche factors including Notch, mTOR, AMPK and Wnt pathways as well as persistence of inflammatory cytokines and chemokines and loss of epithelial barrier function in enteroids further supports that SIV infection impacts on epithelial cell proliferation and intestinal homeostasis.


Assuntos
Reprogramação Celular/genética , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , Macaca mulatta/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Células-Tronco/metabolismo , Animais , Células Epiteliais/virologia , Feminino , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Interações Hospedeiro-Patógeno , Intestino Delgado/virologia , Macaca mulatta/metabolismo , Macaca mulatta/virologia , Masculino , Organoides/metabolismo , Organoides/virologia , RNA-Seq/métodos , Transdução de Sinais/genética , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Células-Tronco/virologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA