Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Annu Rev Nutr ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635875

RESUMO

Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.

2.
Eur Heart J ; 44(39): 4186-4195, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37358553

RESUMO

AIMS: The strength of the relationship of triglyceride-rich lipoproteins (TRL) with risk of coronary heart disease (CHD) compared with low-density lipoprotein (LDL) is yet to be resolved. METHODS AND RESULTS: Single-nucleotide polymorphisms (SNPs) associated with TRL/remnant cholesterol (TRL/remnant-C) and LDL cholesterol (LDL-C) were identified in the UK Biobank population. In a multivariable Mendelian randomization analysis, TRL/remnant-C was strongly and independently associated with CHD in a model adjusted for apolipoprotein B (apoB). Likewise, in a multivariable model, TRL/remnant-C and LDL-C also exhibited independent associations with CHD with odds ratios per 1 mmol/L higher cholesterol of 2.59 [95% confidence interval (CI): 1.99-3.36] and 1.37 [95% CI: 1.27-1.48], respectively. To examine the per-particle atherogenicity of TRL/remnants and LDL, SNPs were categorized into two clusters with differing effects on TRL/remnant-C and LDL-C. Cluster 1 contained SNPs in genes related to receptor-mediated lipoprotein removal that affected LDL-C more than TRL/remnant-C, whereas cluster 2 contained SNPs in genes related to lipolysis that had a much greater effect on TRL/remnant-C. The CHD odds ratio per standard deviation (Sd) higher apoB for cluster 2 (with the higher TRL/remnant to LDL ratio) was 1.76 (95% CI: 1.58-1.96), which was significantly greater than the CHD odds ratio per Sd higher apoB in cluster 1 [1.33 (95% CI: 1.26-1.40)]. A concordant result was obtained by using polygenic scores for each cluster to relate apoB to CHD risk. CONCLUSION: Distinct SNP clusters appear to impact differentially on remnant particles and LDL. Our findings are consistent with TRL/remnants having a substantially greater atherogenicity per particle than LDL.


Assuntos
Bancos de Espécimes Biológicos , Doença das Coronárias , Humanos , LDL-Colesterol , Triglicerídeos , Lipoproteínas/genética , Colesterol , Apolipoproteínas B/genética , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Reino Unido/epidemiologia
3.
Diabetologia ; 66(12): 2307-2319, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37775612

RESUMO

AIMS/HYPOTHESIS: This study explored the hypothesis that significant abnormalities in the metabolism of intestinally derived lipoproteins are present in individuals with type 2 diabetes on statin therapy. These abnormalities may contribute to residual CVD risk. METHODS: To investigate the kinetics of ApoB-48- and ApoB-100-containing lipoproteins, we performed a secondary analysis of 11 overweight/obese individuals with type 2 diabetes who were treated with lifestyle counselling and on a stable dose of metformin who were from an earlier clinical study, and compared these with 11 control participants frequency-matched for age, BMI and sex. Participants in both groups were on a similar statin regimen during the study. Stable isotope tracers were used to determine the kinetics of the following in response to a standard fat-rich meal: (1) apolipoprotein (Apo)B-48 in chylomicrons and VLDL; (2) ApoB-100 in VLDL, intermediate-density lipoprotein (IDL) and LDL; and (3) triglyceride (TG) in VLDL. RESULTS: The fasting lipid profile did not differ significantly between the two groups. Compared with control participants, in individuals with type 2 diabetes, chylomicron TG and ApoB-48 levels exhibited an approximately twofold higher response to the fat-rich meal, and a twofold higher increment was observed in ApoB-48 particles in the VLDL1 and VLDL2 density ranges (all p < 0.05). Again comparing control participants with individuals with type 2 diabetes, in the latter, total ApoB-48 production was 25% higher (556 ± 57 vs 446 ± 57 mg/day; p < 0.001), conversion (fractional transfer rate) of chylomicrons to VLDL was around 40% lower (35 ± 25 vs 82 ± 58 pools/day; p=0.034) and direct clearance of chylomicrons was 5.6-fold higher (5.6 ± 2.2 vs 1.0 ± 1.8 pools/day; p < 0.001). During the postprandial period, ApoB-48 particles accounted for a higher proportion of total VLDL in individuals with type 2 diabetes (44%) compared with control participants (25%), and these ApoB-48 VLDL particles exhibited a fivefold longer residence time in the circulation (p < 0.01). No between-group differences were seen in the kinetics of ApoB-100 and TG in VLDL, or in LDL ApoB-100 production, pool size and clearance rate. As compared with control participants, the IDL ApoB-100 pool in individuals with type 2 diabetes was higher due to increased conversion from VLDL2. CONCLUSIONS/INTERPRETATION: Abnormalities in the metabolism of intestinally derived ApoB-48-containing lipoproteins in individuals with type 2 diabetes on statins may help to explain the residual risk of CVD and may be suitable targets for interventions. TRIAL REGISTRATION: ClinicalTrials.gov NCT02948777.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Apolipoproteína B-100/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Apolipoproteína B-48 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/complicações , Lipoproteínas VLDL/metabolismo , Apolipoproteínas B/metabolismo , Apolipoproteínas B/uso terapêutico , Lipoproteínas , Triglicerídeos , Lipoproteínas IDL , Quilomícrons
4.
J Intern Med ; 291(2): 218-223, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34411351

RESUMO

BACKGROUND: The phospholipase domain-containing 3 gene (PNPLA3)-148M variant is associated with liver steatosis but its influence on the metabolism of triglyceride-rich lipoproteins remains unclear. Here, we investigated the kinetics of large, triglyceride-rich very-low-density lipoprotein (VLDL), (VLDL1 ), and smaller VLDL2 in homozygotes for the PNPLA3-148M variant. METHODS AND RESULTS: The kinetics of apolipoprotein (apo) B100 (apoB100) and triglyceride in VLDL subfractions were analysed in nine subjects homozygous for PNPLA3-148M and nine subjects homozygous for PNPLA3-148I (controls). Liver fat was >3-fold higher in the 148M subjects. Production rates for apoB100 and triglyceride in VLDL1 did not differ significantly between the two groups. Likewise, production rates for VLDL2 -apoB100 and -triglyceride, and fractional clearance rates for both apoB100 and triglyceride in VLDL1 and VLDL2 , were not significantly different. CONCLUSIONS: Despite the higher liver fat content in PNPLA3 148M homozygotes, there was no increase in VLDL production. Equally, VLDL production was maintained at normal levels despite the putative impairment in cytosolic lipid hydrolysis in these subjects.


Assuntos
Aciltransferases/genética , Metabolismo dos Lipídeos , Lipoproteínas VLDL , Fígado , Fosfolipases A2 Independentes de Cálcio/genética , Humanos , Lipídeos , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo
5.
Curr Atheroscler Rep ; 24(3): 133-142, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35175548

RESUMO

PURPOSE OF REVIEW: Implementation of intensive LDL cholesterol (LDL-C) lowering strategies and recognition of the role of triglyceride-rich lipoproteins (TRL) in atherosclerosis has prompted re-evaluation of the suitability of current lipid profile measurements for future clinical practice. RECENT FINDINGS: At low concentrations of LDL-C (< 1.8 mmol/l/70 mg/dl), the Friedewald equation yields estimates with substantial negative bias. New equations provide a more accurate means of calculating LDL-C. Recent reports indicate that the increase in risk per unit increment in TRL/remnant cholesterol may be greater than that of LDL-C. Hence, specific measurement of TRL/remnant cholesterol may be of importance in determining risk. Non-HDL cholesterol and plasma apolipoprotein B have been shown in discordancy analyses to identify individuals at high risk even when LDL-C is low. There is a need to adopt updated methods for determining LDL-C and to develop better biomarkers that more accurately reflect the abundance of TRL remnant particles.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Biomarcadores , Doenças Cardiovasculares/epidemiologia , LDL-Colesterol , Humanos , Lipoproteínas , Triglicerídeos
6.
Arterioscler Thromb Vasc Biol ; 41(2): 962-975, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356392

RESUMO

OBJECTIVE: Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes. Kinetic parameters were determined for the following: apoB48 in chylomicrons; triglyceride in VLDL1 (very low-density lipoprotein) and VLDL2; and apoB100 in VLDL1, VLDL2, IDL (intermediate-density lipoprotein), and LDL (low-density lipoprotein). Evolocumab did not alter the kinetics of apoB48 in chylomicrons or apoB100 or triglyceride in VLDL1. In contrast, the fractional catabolic rates of VLDL2-apoB100 and VLDL2-triglyceride were both increased by about 45%, which led to a 28% fall in the VLDL2 plasma level. LDL-apoB100 was markedly reduced by evolocumab, which was linked to metabolic heterogeneity in this fraction. Evolocumab increased clearance of the more rapidly metabolized LDL by 61% and decreased production of the more slowly cleared LDL by 75%. ApoC-III kinetics were not altered by evolocumab, but the apoE fractional catabolic rates increased by 45% and the apoE plasma level fell by 33%. The apoE fractional catabolic rates was associated with the decrease in VLDL2- and IDL-apoB100 concentrations. CONCLUSIONS: Evolocumab had only minor effects on lipoproteins that are involved in triglyceride transport (chylomicrons and VLDL1) but, in contrast, had a profound impact on lipoproteins that carry cholesterol (VLDL2, IDL, LDL). Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02948777.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Apolipoproteína B-100/sangue , Apolipoproteína B-48/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Gorduras na Dieta/administração & dosagem , Inibidores de Serina Proteinase/uso terapêutico , Adolescente , Adulto , Idoso , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticolesterolemiantes/efeitos adversos , Biomarcadores/sangue , Colesterol/sangue , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Remanescentes de Quilomícrons/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Gorduras na Dieta/sangue , Dislipidemias/sangue , Dislipidemias/diagnóstico , Dislipidemias/tratamento farmacológico , Feminino , Humanos , Cinética , Lipoproteínas/sangue , Lipoproteínas VLDL/sangue , Masculino , Pessoa de Meia-Idade , Inibidores de PCSK9 , Período Pós-Prandial , Pró-Proteína Convertase 9/metabolismo , Inibidores de Serina Proteinase/efeitos adversos , Fatores de Tempo , Resultado do Tratamento , Triglicerídeos/sangue , Adulto Jovem
7.
Eur Heart J ; 42(47): 4791-4806, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34472586

RESUMO

Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD.


Assuntos
Aterosclerose , Isquemia Encefálica , Doenças Cardiovasculares , Acidente Vascular Cerebral , Aterosclerose/prevenção & controle , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Humanos , Lipoproteínas , Triglicerídeos
8.
Diabetes Obes Metab ; 23(5): 1191-1201, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33502078

RESUMO

AIM: To elucidate the impact of liraglutide on the kinetics of apolipoprotein (apo)B48- and apoB100-containing triglyceride-rich lipoproteins in subjects with type 2 diabetes (T2D) after a single fat-rich meal. MATERIALS AND METHODS: Subjects with T2D were included in a study to investigate postprandial apoB48 and apoB100 metabolism before and after 16 weeks on l.8 mg/day liraglutide (n = 14) or placebo (n = 4). Stable isotope tracer and compartmental modelling techniques were used to determine the impact of liraglutide on chylomicron and very low-density lipoprotein (VLDL) production and clearance after a single fat-rich meal. RESULTS: Liraglutide reduced apoB48 synthesis in chylomicrons by 60% (p < .0001) and increased the triglyceride/apoB48 ratio (i.e. the size) of chylomicrons (p < .001). Direct clearance of chylomicrons, a quantitatively significant pathway pretreatment, decreased by 90% on liraglutide (p < .001). Liraglutide also reduced VLDL1 -triglyceride secretion (p = .017) in parallel with reduced liver fat. Chylomicron-apoB48 production and particle size were related to insulin sensitivity (p = .015 and p < .001, respectively), but these associations were perturbed by liraglutide. CONCLUSIONS: In a physiologically relevant setting that mirrored regular feeding in subjects with T2D, liraglutide promoted potentially beneficial changes on postprandial apoB48 metabolism. Using our data in an integrated metabolic model, we describe how the action of liraglutide in T2D on chylomicron and VLDL kinetics could lead to decreased generation of remnant lipoproteins.


Assuntos
Diabetes Mellitus Tipo 2 , Liraglutida , Apolipoproteína B-48 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Lipoproteínas , Lipoproteínas VLDL , Liraglutida/uso terapêutico , Período Pós-Prandial , Triglicerídeos
9.
Curr Opin Lipidol ; 30(6): 438-445, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31609725

RESUMO

PURPOSE OF REVIEW: Cardiovascular disease prevention trials of lipid lowering with statins have shown unexpected long-term benefits after the formal randomized treatment stopped. This finding needs further exploration because it raises the possibility that the trajectory of the disease can be modified. RECENT FINDINGS: Extended follow up data are now available from further major primary prevention studies and from meta-analyses of the legacy effect of statin trials. New outcome studies have been proposed and launched to test the ability of early intervention to slow or regress atherosclerosis. SUMMARY: Legacy effects are apparent in trials of LDL lowering in hypercholesterolemic and hypertensive patient cohorts. Over follow up periods of decades, both cardiovascular mortality and all-cause mortality are reduced in individuals who received 3 to 5 years of statin therapy. The phenomenon is observed also in studies of intensive glycemic control suggesting that it is possible to impact plaque development with long-term beneficial consequences. Novel strategies for primary prevention are being devised that include the early use of both prolonged-moderate and short-term aggressive LDL lowering.


Assuntos
Aterosclerose/sangue , Aterosclerose/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Humanos , Lipoproteínas LDL , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
Cardiovasc Diabetol ; 18(1): 71, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164165

RESUMO

In the era of precision medicine, treatments that target specific modifiable characteristics of high-risk patients have the potential to lower further the residual risk of atherosclerotic cardiovascular events. Correction of atherogenic dyslipidemia, however, remains a major unmet clinical need. Elevated plasma triglycerides, with or without low levels of high-density lipoprotein cholesterol (HDL-C), offer a key modifiable component of this common dyslipidemia, especially in insulin resistant conditions such as type 2 diabetes mellitus. The development of selective peroxisome proliferator-activated receptor alpha modulators (SPPARMα) offers an approach to address this treatment gap. This Joint Consensus Panel appraised evidence for the first SPPARMα agonist and concluded that this agent represents a novel therapeutic class, distinct from fibrates, based on pharmacological activity, and, importantly, a safe hepatic and renal profile. The ongoing PROMINENT cardiovascular outcomes trial is testing in 10,000 patients with type 2 diabetes mellitus, elevated triglycerides, and low levels of HDL-C whether treatment with this SPPARMα agonist safely reduces residual cardiovascular risk.


Assuntos
Benzoxazóis/uso terapêutico , Butiratos/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Dislipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Lipídeos/sangue , PPAR alfa/agonistas , Animais , Benzoxazóis/efeitos adversos , Biomarcadores/sangue , Butiratos/efeitos adversos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Consenso , Dislipidemias/sangue , Dislipidemias/diagnóstico , Humanos , Hipolipemiantes/efeitos adversos , Terapia de Alvo Molecular , PPAR alfa/metabolismo , Segurança do Paciente , Medição de Risco , Fatores de Risco , Transdução de Sinais , Resultado do Tratamento
11.
Curr Atheroscler Rep ; 21(8): 27, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31111320

RESUMO

PURPOSE OF REVIEW: Apolipoprotein C-III (apoC-III) is known to inhibit lipoprotein lipase (LPL) and function as an important regulator of triglyceride metabolism. In addition, apoC-III has also more recently been identified as an important risk factor for cardiovascular disease. This review summarizes the mechanisms by which apoC-III induces hypertriglyceridemia and promotes atherogenesis, as well as the findings from recent clinical trials using novel strategies for lowering apoC-III. RECENT FINDINGS: Genetic studies have identified subjects with heterozygote loss-of-function (LOF) mutations in APOC3, the gene coding for apoC-III. Clinical characterization of these individuals shows that the LOF variants associate with a low-risk lipoprotein profile, in particular reduced plasma triglycerides. Recent results also show that complete deficiency of apoC-III is not a lethal mutation and is associated with very rapid lipolysis of plasma triglyceride-rich lipoproteins (TRL). Ongoing trials based on emerging gene-silencing technologies show that intervention markedly lowers apoC-III levels and, consequently, plasma triglyceride. Unexpectedly, the evidence points to apoC-III not only inhibiting LPL activity but also suppressing removal of TRLs by LPL-independent pathways. Available data clearly show that apoC-III is an important cardiovascular risk factor and that lifelong deficiency of apoC-III is cardioprotective. Novel therapies have been developed, and results from recent clinical trials indicate that effective reduction of plasma triglycerides by inhibition of apoC-III might be a promising strategy in management of severe hypertriglyceridemia and, more generally, a novel approach to CHD prevention in those with elevated plasma triglyceride.


Assuntos
Apolipoproteína C-III/antagonistas & inibidores , Apolipoproteína C-III/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Hipertrigliceridemia/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Apolipoproteína C-III/imunologia , Apolipoproteína C-III/metabolismo , Aterosclerose/tratamento farmacológico , Ácidos Fíbricos/farmacologia , Ácidos Fíbricos/uso terapêutico , Inativação Gênica , Humanos , Metabolismo dos Lipídeos , Lipase Lipoproteica/metabolismo , Lipoproteínas/metabolismo , Mutação com Perda de Função , Fatores de Risco , Triglicerídeos/metabolismo
12.
Curr Atheroscler Rep ; 21(10): 41, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31350612

RESUMO

PURPOSE OF REVIEW: We summarize the best evidence for statins in the prevention and treatment of heart failure. RECENT FINDINGS: In patients with cardiovascular risk factors or established atherosclerotic cardiovascular disease (but without heart failure), statins reduce the risk of incident heart failure-mainly by preventing myocardial infarction although an additional benefit from reducing myocardial ischemia cannot be excluded. However, in patients with established heart failure, statins do not reduce the risk of cardiovascular death, which is mainly caused by pump failure and ventricular arrhythmias. Retrospective analyses, however, suggest that statins may reduce the rate of heart failure hospitalization and atherosclerotic events (which are proportionately much less common in these patients than heart failure hospitalization or death). Statin therapy should probably be continued in patients with coronary artery disease developing heart failure, although the weak evidence and small benefit may not justify the use of this treatment in very elderly patients with a short life expectancy and in which polypharmacy is a problem.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , LDL-Colesterol/sangue , Doença da Artéria Coronariana/tratamento farmacológico , Humanos , Pessoa de Meia-Idade , Infarto do Miocárdio/prevenção & controle , Polimedicação , Adulto Jovem
13.
JAMA ; 321(4): 364-373, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30694319

RESUMO

Importance: Triglycerides and cholesterol are both carried in plasma by apolipoprotein B (ApoB)-containing lipoprotein particles. It is unknown whether lowering plasma triglyceride levels reduces the risk of cardiovascular events to the same extent as lowering low-density lipoprotein cholesterol (LDL-C) levels. Objective: To compare the association of triglyceride-lowering variants in the lipoprotein lipase (LPL) gene and LDL-C-lowering variants in the LDL receptor gene (LDLR) with the risk of cardiovascular disease per unit change in ApoB. Design, Setting, and Participants: Mendelian randomization analyses evaluating the associations of genetic scores composed of triglyceride-lowering variants in the LPL gene and LDL-C-lowering variants in the LDLR gene, respectively, with the risk of cardiovascular events among participants enrolled in 63 cohort or case-control studies conducted in North America or Europe between 1948 and 2017. Exposures: Differences in plasma triglyceride, LDL-C, and ApoB levels associated with the LPL and LDLR genetic scores. Main Outcomes and Measures: Odds ratio (OR) for coronary heart disease (CHD)-defined as coronary death, myocardial infarction, or coronary revascularization-per 10-mg/dL lower concentration of ApoB-containing lipoproteins. Results: A total of 654 783 participants, including 91 129 cases of CHD, were included (mean age, 62.7 years; 51.4% women). For each 10-mg/dL lower level of ApoB-containing lipoproteins, the LPL score was associated with 69.9-mg/dL (95% CI, 68.1-71.6; P = 7.1 × 10-1363) lower triglyceride levels and 0.7-mg/dL (95% CI, 0.03-1.4; P = .04) higher LDL-C levels; while the LDLR score was associated with 14.2-mg/dL (95% CI, 13.6-14.8; P = 1.4 × 10-465) lower LDL-C and 1.9-mg/dL (95% CI, 0.1-3.9; P = .04) lower triglyceride levels. Despite these differences in associated lipid levels, the LPL and LDLR scores were associated with similar lower risk of CHD per 10-mg/dL lower level of ApoB-containing lipoproteins (OR, 0.771 [95% CI, 0.741-0.802], P = 3.9 × 10-38 and OR, 0.773 [95% CI, 0.747-0.801], P = 1.1 × 10-46, respectively). In multivariable mendelian randomization analyses, the associations between triglyceride and LDL-C levels with the risk of CHD became null after adjusting for differences in ApoB (triglycerides: OR, 1.014 [95% CI, 0.965-1.065], P = .19; LDL-C: OR, 1.010 [95% CI, 0.967-1.055], P = .19; ApoB: OR, 0.761 [95% CI, 0.723-0.798], P = 7.51 × 10-20). Conclusions and Relevance: Triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants were associated with similar lower risk of CHD per unit difference in ApoB. Therefore, the clinical benefit of lowering triglyceride and LDL-C levels may be proportional to the absolute change in ApoB.


Assuntos
Apolipoproteínas B/sangue , LDL-Colesterol/sangue , Doença das Coronárias/genética , Predisposição Genética para Doença , Variação Genética , Lipase Lipoproteica/genética , Receptores de LDL/genética , Triglicerídeos/sangue , Estudos de Casos e Controles , Doença das Coronárias/sangue , Feminino , Humanos , Lipase Lipoproteica/metabolismo , Mutação com Perda de Função , Masculino , Análise da Randomização Mendeliana , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
14.
JAMA ; 322(14): 1381-1391, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31475726

RESUMO

IMPORTANCE: The relationship between exposure to lower low-density lipoprotein cholesterol (LDL-C) and lower systolic blood pressure (SBP) with the risk of cardiovascular disease has not been reliably quantified. OBJECTIVE: To assess the association of lifetime exposure to the combination of both lower LDL-C and lower SBP with the lifetime risk of cardiovascular disease. DESIGN, SETTING, AND PARTICIPANTS: Among 438 952 participants enrolled in the UK Biobank between 2006 and 2010 and followed up through 2018, genetic LDL-C and SBP scores were used as instruments to divide participants into groups with lifetime exposure to lower LDL-C, lower SBP, or both. Differences in plasma LDL-C, SBP, and cardiovascular event rates between the groups were compared to estimate associations with lifetime risk of cardiovascular disease. EXPOSURES: Differences in plasma LDL-C and SBP compared with participants with both genetic scores below the median. Genetic risk scores higher than the median were associated with lower LDL-C and lower SBP. MAIN OUTCOMES AND MEASURES: Odds ratio (OR) for major coronary events, defined as coronary death, nonfatal myocardial infarction, or coronary revascularization. RESULTS: The mean age of the 438 952 participants was 65.2 years (range, 40.4-80.0 years), 54.1% were women, and 24 980 experienced a first major coronary event. Compared with the reference group, participants with LDL-C genetic scores higher than the median had 14.7-mg/dL lower LDL-C levels and an OR of 0.73 for major coronary events (95% CI, 0.70-0.75; P < .001). Participants with SBP genetic scores higher than the median had 2.9-mm Hg lower SBP and an OR of 0.82 for major coronary events (95% CI, 0.79-0.85, P < .001). Participants in the group with both genetic scores higher than the median had 13.9-mg/dL lower LDL-C, 3.1-mm Hg lower SBP, and an OR of 0.61 for major coronary events (95% CI, 0.59-0.64; P < .001). In a 4 × 4 factorial analysis, exposure to increasing genetic risk scores and lower LDL-C levels and SBP was associated with dose-dependent lower risks of major coronary events. In a meta-regression analysis, combined exposure to 38.67-mg/dL lower LDL-C and 10-mm Hg lower SBP was associated with an OR of 0.22 for major coronary events (95% CI, 0.17-0.26; P < .001), and 0.32 for cardiovascular death (95% CI, 0.25-0.40; P < .001). CONCLUSIONS AND RELEVANCE: Lifelong genetic exposure to lower levels of low-density lipoprotein cholesterol and lower systolic blood pressure was associated with lower cardiovascular risk. However, these findings cannot be assumed to represent the magnitude of benefit achievable from treatment of these risk factors.

15.
Circulation ; 136(20): 1878-1891, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28877913

RESUMO

BACKGROUND: Patients with primary elevations of low-density lipoprotein cholesterol (LDL-C) ≥190 mg/dL are at a higher risk of atherosclerotic cardiovascular disease as a result of long-term exposure to markedly elevated LDL-C levels. Therefore, initiation of statin therapy is recommended for these individuals. However, there is a lack of randomized trial evidence supporting these recommendations in primary prevention. In the present analysis, we provide hitherto unpublished data on the cardiovascular effects of LDL-C lowering among a primary prevention population with LDL-C ≥190 mg/dL. METHODS: We aimed to assess the benefits of LDL-C lowering on cardiovascular outcomes among individuals with primary elevations of LDL-C ≥190 mg/dL without preexisting vascular disease at baseline. We performed post hoc analyses from the WOSCOPS (West of Scotland Coronary Prevention Study) randomized, placebo-controlled trial, and observational posttrial long-term follow-up, after excluding individuals with evidence of vascular disease at baseline. WOSCOPS enrolled 6595 men aged 45 to 64 years, who were randomly assigned to pravastatin 40 mg/d or placebo. In the present analyses, 5529 participants without evidence of vascular disease were included, stratified by LDL-C levels into those with LDL-C <190 mg/dL (n=2969; mean LDL-C 178±6 mg/dL) and those with LDL-C ≥190 mg/dL (n=2560; mean LDL-C 206±12 mg/dL). The effect of pravastatin versus placebo on coronary heart disease and major adverse cardiovascular events were assessed over the 4.9-year randomized controlled trial phase and on mortality outcomes over a total of 20 years of follow-up. RESULTS: Among 5529 individuals without vascular disease, pravastatin reduced the risk of coronary heart disease by 27% (P=0.002) and major adverse cardiovascular events by 25% (P=0.004) consistently among those with and without LDL-C ≥190 mg/dL (P-interaction >0.9). Among individuals with LDL-C ≥190 mg/dL, pravastatin reduced the risk of coronary heart disease by 27% (P=0.033) and major adverse cardiovascular events by 25% (P=0.037) during the initial trial phase and the risk of coronary heart disease death, cardiovascular death, and all-cause mortality by 28% (P=0.020), 25% (P=0.009), and 18% (P=0.004), respectively, over a total of 20 years of follow-up. CONCLUSIONS: The present analyses provide robust novel evidence for the short- and long-term benefits of lowering LDL-C for the primary prevention of cardiovascular disease among individuals with primary elevations of LDL-C ≥190 mg/dL.


Assuntos
Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/prevenção & controle , LDL-Colesterol/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Pravastatina/uso terapêutico , Prevenção Primária/métodos , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Doenças Cardiovasculares/epidemiologia , LDL-Colesterol/antagonistas & inibidores , Doença das Coronárias/sangue , Doença das Coronárias/tratamento farmacológico , Doença das Coronárias/epidemiologia , Seguimentos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/epidemiologia , Masculino , Pessoa de Meia-Idade , Pravastatina/farmacologia , Prevenção Primária/tendências , Escócia/epidemiologia
16.
Br J Nutr ; 120(1): 23-32, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729672

RESUMO

n-3 Fatty acids are associated with better cardiovascular and cognitive health. However, the concentration of EPA, DPA and DHA in different plasma lipid pools differs and factors influencing this heterogeneity are poorly understood. Our aim was to evaluate the association of oily fish intake, sex, age, BMI and APOE genotype with concentrations of EPA, DPA and DHA in plasma phosphatidylcholine (PC), NEFA, cholesteryl esters (CE) and TAG. Healthy adults (148 male, 158 female, age 20-71 years) were recruited according to APOE genotype, sex and age. The fatty acid composition was determined by GC. Oily fish intake was positively associated with EPA in PC, CE and TAG, DPA in TAG, and DHA in all fractions (P≤0·008). There was a positive association between age and EPA in PC, CE and TAG, DPA in NEFA and CE, and DHA in PC and CE (P≤0·034). DPA was higher in TAG in males than females (P<0·001). There was a positive association between BMI and DPA and DHA in TAG (P<0·006 and 0·02, respectively). APOE genotype×sex interactions were observed: the APOE4 allele associated with higher EPA in males (P=0·002), and there was also evidence for higher DPA and DHA (P≤0·032). In conclusion, EPA, DPA and DHA in plasma lipids are associated with oily fish intake, sex, age, BMI and APOE genotype. Such insights may be used to better understand the link between plasma fatty acid profiles and dietary exposure and may influence intake recommendations across population subgroups.


Assuntos
Fatores Etários , Apolipoproteínas E/genética , Índice de Massa Corporal , Dieta , Ácidos Graxos Ômega-3/sangue , Óleos de Peixe , Fatores Sexuais , Adulto , Idoso , Alelos , Animais , Ésteres do Colesterol/sangue , Estudos Cross-Over , Método Duplo-Cego , Ácidos Graxos Insaturados/sangue , Feminino , Peixes , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/sangue , Reino Unido , Adulto Jovem
17.
Curr Cardiol Rep ; 20(8): 60, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904807

RESUMO

PURPOSE OF REVIEW: The advent of combination therapy to provide LDL lowering beyond that achieved with statins necessitates the development of greater understanding of how drugs work together, what changes occur in key lipoprotein fractions, and what residual risk remains. RECENT FINDINGS: Clinical trials of agents that, when added to statins, generate profound LDL lowering have been successful in reducing further the risk of cardiovascular disease. LDL cholesterol can be now decreased to unprecedented levels, so the focus of attention then shifts to other apolipoprotein B-containing, atherogenic lipoprotein classes such as lipoprotein(a) and remnants of the metabolism of triglyceride-rich particles. "Non-HDL cholesterol" is used increasingly (especially if measured in the non-fasting state) as a more comprehensive index of risk. Metabolic studies reveal how current drugs act in combination to achieve profound lipid lowering. However, care is needed in interpreting achieved LDLc and non-HDLc levels in the emerging treatment paradigm.


Assuntos
Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/prevenção & controle , LDL-Colesterol/sangue , Dislipidemias/tratamento farmacológico , Anticolesterolemiantes/uso terapêutico , HDL-Colesterol/sangue , Ensaios Clínicos como Assunto , Ezetimiba/uso terapêutico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de PCSK9 , Gestão de Riscos , Triglicerídeos/sangue
18.
Eur Heart J ; 38(32): 2459-2472, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28444290

RESUMO

AIMS: To appraise the clinical and genetic evidence that low-density lipoproteins (LDLs) cause atherosclerotic cardiovascular disease (ASCVD). METHODS AND RESULTS: We assessed whether the association between LDL and ASCVD fulfils the criteria for causality by evaluating the totality of evidence from genetic studies, prospective epidemiologic cohort studies, Mendelian randomization studies, and randomized trials of LDL-lowering therapies. In clinical studies, plasma LDL burden is usually estimated by determination of plasma LDL cholesterol level (LDL-C). Rare genetic mutations that cause reduced LDL receptor function lead to markedly higher LDL-C and a dose-dependent increase in the risk of ASCVD, whereas rare variants leading to lower LDL-C are associated with a correspondingly lower risk of ASCVD. Separate meta-analyses of over 200 prospective cohort studies, Mendelian randomization studies, and randomized trials including more than 2 million participants with over 20 million person-years of follow-up and over 150 000 cardiovascular events demonstrate a remarkably consistent dose-dependent log-linear association between the absolute magnitude of exposure of the vasculature to LDL-C and the risk of ASCVD; and this effect appears to increase with increasing duration of exposure to LDL-C. Both the naturally randomized genetic studies and the randomized intervention trials consistently demonstrate that any mechanism of lowering plasma LDL particle concentration should reduce the risk of ASCVD events proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C, provided that the achieved reduction in LDL-C is concordant with the reduction in LDL particle number and that there are no competing deleterious off-target effects. CONCLUSION: Consistent evidence from numerous and multiple different types of clinical and genetic studies unequivocally establishes that LDL causes ASCVD.


Assuntos
Aterosclerose/etiologia , Lipoproteínas LDL/fisiologia , Anticolesterolemiantes/uso terapêutico , Aterosclerose/prevenção & controle , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Consenso , Métodos Epidemiológicos , Ezetimiba/uso terapêutico , Predisposição Genética para Doença/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipidemias/prevenção & controle , Inibidores de PCSK9
19.
Circulation ; 133(11): 1073-80, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26864092

RESUMO

BACKGROUND: Extended follow-up of statin-based low-density lipoprotein cholesterol lowering trials improves the understanding of statin safety and efficacy. Examining cumulative cardiovascular events (total burden of disease) gives a better appreciation of the clinical value of statins. This article evaluates the long-term impact of therapy on mortality and cumulative morbidity in a high-risk cohort of men. METHODS AND RESULTS: The West of Scotland Coronary Prevention Study was a primary prevention trial in 45- to 64-year-old men with high low-density lipoprotein cholesterol. A total of 6595 men were randomized to receive pravastatin 40 mg once daily or placebo for an average of 4.9 years. Subsequent linkage to electronic health records permitted analysis of major incident events over 20 years. Post trial statin use was recorded for 5 years after the trial but not for the last 10 years. Men allocated to pravastatin had reduced all-cause mortality (hazard ratio, 0.87; 95% confidence interval, 0.80-0.94; P=0.0007), attributable mainly to a 21% decrease in cardiovascular death (hazard ratio, 0.79; 95% confidence interval, 0.69-0.90; P=0.0004). There was no difference in noncardiovascular or cancer death rates between groups. Cumulative hospitalization event rates were lower in the statin-treated arm: by 18% for any coronary event (P=0.002), by 24% for myocardial infarction (P=0.01), and by 35% for heart failure (P=0.002). There were no significant differences between groups in hospitalization for noncardiovascular causes. CONCLUSION: Statin treatment for 5 years was associated with a legacy benefit, with improved survival and a substantial reduction in cardiovascular disease outcomes over a 20-year period, supporting the wider adoption of primary prevention strategies.


Assuntos
LDL-Colesterol/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Pravastatina/uso terapêutico , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/prevenção & controle , Causas de Morte , Complicações do Diabetes/epidemiologia , Diabetes Mellitus/mortalidade , Seguimentos , Hospitalização/estatística & dados numéricos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Masculino , Pessoa de Meia-Idade , Mortalidade , Neoplasias/mortalidade , Pravastatina/efeitos adversos , Modelos de Riscos Proporcionais , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Escócia/epidemiologia , Análise de Sobrevida
20.
Ann Rheum Dis ; 76(11): 1949-1952, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28916714

RESUMO

OBJECTIVES: Patients with rheumatoid arthritis (RA) have reduced serum low-density lipoprotein cholesterol (LDL-c), which increases following therapeutic IL-6 blockade. We aimed to define the metabolic pathways underlying these lipid changes. METHODS: In the KALIBRA study, lipoprotein kinetic studies were performed on 11 patients with severe active RA at baseline and following three intravenous infusions of the IL-6R blocker tocilizumab. The primary outcome measure was the fractional catabolic rate (FCR) of LDL. RESULTS: Serum total cholesterol (4.8 vs 5.7 mmol/L, p=0.003), LDL-c (2.9 vs 3.4 mmol/L, p=0.014) and high-density lipoprotein cholesterol (1.23 vs 1.52 mmol/L, p=0.006) increased following tocilizumab therapy. The LDL FCR fell from a state of hypercatabolism to a value approximating that of the normal population (0.53 vs 0.27 pools/day, p=0.006). Changes in FCR correlated tightly with changes in serum LDL-c and C-reactive protein but not Clinical Disease Activity Index. CONCLUSIONS: Patients with RA have low serum LDL-c due to hypercatabolism of LDL particles. IL-6 blockade normalises this catabolism in a manner associating with the acute phase response (and thus hepatic IL-6 signalling) but not with RA disease activity as measured clinically. We demonstrate that IL-6 is one of the key drivers of inflammation-driven dyslipidaemia.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Antirreumáticos/farmacocinética , Artrite Reumatoide/sangue , Artrite Reumatoide/tratamento farmacológico , LDL-Colesterol/sangue , Interleucina-6/metabolismo , Proteína C-Reativa/análise , Colesterol/sangue , HDL-Colesterol/sangue , Feminino , Humanos , Interleucina-6/antagonistas & inibidores , Cinética , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA