Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Pharmacol Rev ; 73(2): 847-859, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33712517

RESUMO

The popularity of botanical and other purported medicinal natural products (NPs) continues to grow, especially among patients with chronic illnesses and patients managed on complex prescription drug regimens. With few exceptions, the risk of a given NP to precipitate a clinically significant pharmacokinetic NP-drug interaction (NPDI) remains understudied or unknown. Application of static or dynamic mathematical models to predict and/or simulate NPDIs can provide critical information about the potential clinical significance of these complex interactions. However, methods used to conduct such predictions or simulations are highly variable. Additionally, published reports using mathematical models to interrogate NPDIs are not always sufficiently detailed to ensure reproducibility. Consequently, guidelines are needed to inform the conduct and reporting of these modeling efforts. This recommended approach from the Center of Excellence for Natural Product Drug Interaction Research describes a systematic method for using mathematical models to interpret the interaction risk of NPs as precipitants of potential clinically significant pharmacokinetic NPDIs. A framework for developing and applying pharmacokinetic NPDI models is presented with the aim of promoting accuracy, reproducibility, and generalizability in the literature. SIGNIFICANCE STATEMENT: Many natural products (NPs) contain phytoconstituents that can increase or decrease systemic or tissue exposure to, and potentially the efficacy of, a pharmaceutical drug; however, no regulatory agency guidelines exist to assist in predicting the risk of these complex interactions. This recommended approach from a multi-institutional consortium designated by National Institutes of Health as the Center of Excellence for Natural Product Drug Interaction Research provides a framework for modeling pharmacokinetic NP-drug interactions.


Assuntos
Produtos Biológicos , Preparações Farmacêuticas , Interações Medicamentosas , Humanos , Reprodutibilidade dos Testes
2.
J Pharmacol Exp Ther ; 387(3): 252-264, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37541764

RESUMO

The natural product goldenseal is a clinical inhibitor of CYP3A activity, as evidenced by a 40%-60% increase in midazolam area under the plasma concentration versus time curve (AUC) after coadministration with goldenseal. The predominant goldenseal alkaloids berberine and (-)-ß-hydrastine were previously identified as time-dependent CYP3A inhibitors using human liver microsomes. Whether these alkaloids contribute to the clinical interaction, as well as the primary anatomic site (hepatic vs. intestinal) and mode of CYP3A inhibition (reversible vs. time-dependent), remain uncharacterized. The objective of this study was to mechanistically assess the pharmacokinetic goldenseal-midazolam interaction using an integrated in vitro-in vivo-in silico approach. Using human intestinal microsomes, (-)-ß-hydrastine was a more potent time-dependent inhibitor of midazolam 1'-hydroxylation than berberine (KI and kinact: 8.48 µM and 0.041 minutes-1, respectively, vs. >250 µM and ∼0.06 minutes-1, respectively). Both the AUC and Cmax of midazolam increased by 40%-60% after acute (single 3-g dose) and chronic (1 g thrice daily × 6 days) goldenseal administration to healthy adults. These increases, coupled with a modest or no increase (≤23%) in half-life, suggested that goldenseal primarily inhibited intestinal CYP3A. A physiologically based pharmacokinetic interaction model incorporating berberine and (-)-ß-hydrastine successfully predicted the goldenseal-midazolam interaction to within 20% of that observed after both chronic and acute goldenseal administration. Simulations implicated (-)-ß-hydrastine as the major alkaloid precipitating the interaction, primarily via time-dependent inhibition of intestinal CYP3A, after chronic and acute goldenseal exposure. Results highlight the potential interplay between time-dependent and reversible inhibition of intestinal CYP3A as the mechanism underlying natural product-drug interactions, even after acute exposure to the precipitant. SIGNIFICANCE STATEMENT: Natural products can alter the pharmacokinetics of an object drug, potentially resulting in increased off-target effects or decreased efficacy of the drug. The objective of this work was to evaluate fundamental mechanisms underlying the clinically observed goldenseal-midazolam interaction. Results support the use of an integrated approach involving established in vitro assays, clinical evaluation, and physiologically based pharmacokinetic modeling to elucidate the complex interplay between multiple phytoconstituents and various pharmacokinetic processes driving a drug interaction.


Assuntos
Alcaloides , Berberina , Produtos Biológicos , Hydrastis , Adulto , Humanos , Midazolam/farmacocinética , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Modelos Biológicos
3.
Drug Metab Dispos ; 51(6): 743-752, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36972999

RESUMO

Cannabidiol (CBD) is available as a prescription oral drug that is indicated for the treatment of some types of epilepsy in children and adults. CBD is also available over-the-counter and is used to self-treat a variety of other ailments, including pain, anxiety, and insomnia. Accordingly, CBD may be consumed with other medications, resulting in possible CBD-drug interactions. Such interactions can be predicted in healthy and hepatically-impaired (HI) adults and in children through physiologically based pharmacokinetic (PBPK) modeling and simulation. These PBPK models must be populated with CBD-specific parameters, including the enzymes that metabolize CBD in adults. In vitro reaction phenotyping experiments showed that UDP-glucuronosyltransferases (UGTs, 80%), particularly UGT2B7 (64%), were the major contributors to CBD metabolism in adult human liver microsomes. Among the cytochrome P450s (CYPs) tested, CYP2C19 (5.7%) and CYP3A (6.5%) were the major CYPs responsible for CBD metabolism. Using these and other physicochemical parameters, a CBD PBPK model was developed and validated for healthy adults. This model was then extended to predict CBD systemic exposure in HI adults and children. Our PBPK model successfully predicted CBD systemic exposure in both populations within 0.5- to 2-fold of the observed values. In conclusion, we developed and validated a PBPK model to predict CBD systemic exposure in healthy and HI adults and children. This model can be used to predict CBD-drug or CBD-drug-disease interactions in these populations. SIGNIFICANCE STATEMENT: Our PBPK model successfully predicted CBD systemic exposure in healthy and hepatically-impaired adults, as well as children with epilepsy. This model could be used in the future to predict CBD-drug or CBD-drug-disease interactions in these special populations.


Assuntos
Canabidiol , Humanos , Adulto , Criança , Sistema Enzimático do Citocromo P-450 , Interações Medicamentosas , Microssomos Hepáticos , Modelos Biológicos
4.
Drug Metab Dispos ; 51(8): 923-935, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37286363

RESUMO

Kratom is a botanical natural product belonging to the coffee family, with stimulant effects at low doses and opioid-like effects at higher doses. During the last two decades, kratom has been purported as a safer alternative to pharmaceutical and illicit drugs to self-manage pain and opioid withdrawal symptoms. Kratom alkaloids, typically mitragynine, have been detected in biologic samples from overdose deaths. These deaths are often observed in combination with other drugs and are suspected to result from polyintoxications. This review focuses on the potential for kratom to precipitate pharmacokinetic interactions with object drugs involved in these reported polyintoxications. The legal status, chemistry, pharmacology, and toxicology are also summarized. The aggregate in vitro and clinical data identified kratom and select kratom alkaloids as modulators of cytochrome P450 (P450) enzyme activity, notably as inhibitors of CYP2D6 and CYP3A, as well as P-glycoprotein-mediated efflux activity. These inhibitory effects could increase the systemic exposure to co-consumed object drugs, which may lead to adverse effects. Collectively, the evidence to date warrants further evaluation of potential kratom-drug interactions using an iterative approach involving additional mechanistic in vitro studies, well designed clinical studies, and physiologically based pharmacokinetic modeling and simulation. This critical information is needed to fill knowledge gaps regarding the safe and effective use of kratom, thereby addressing ongoing public health concerns. SIGNIFICANCE STATEMENT: The botanical kratom is increasingly used to self-manage pain and opioid withdrawal symptoms due to having opioid-like effects. The legal status, chemistry, pharmacology, toxicology, and drug interaction potential of kratom are reviewed. Kratom-associated polyintoxications and in vitro-in vivo extrapolations suggest that kratom can precipitate pharmacokinetic drug interactions by inhibiting CYP2D6, CYP3A, and P-glycoprotein. An iterative approach that includes clinical studies and physiologically based pharmacokinetic modeling and simulation is recommended for further evaluation of potential unwanted kratom-drug interactions.


Assuntos
Mitragyna , Síndrome de Abstinência a Substâncias , Humanos , Analgésicos Opioides/efeitos adversos , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Dor/tratamento farmacológico
5.
Drug Metab Dispos ; 51(11): 1483-1489, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562957

RESUMO

Goldenseal is a perennial plant native to eastern North America. A recent clinical study reported goldenseal decreased metformin Cmax and area under the blood concentration versus time curve (AUC) by 27% and 23%, respectively, but half-life and renal clearance were unchanged. These observations suggested goldenseal altered processes involved in metformin absorption. The underlying mechanism(s) remain(s) unknown. One mechanism for the decreased metformin systemic exposure is inhibition by goldenseal of intestinal uptake transporters involved in metformin absorption. Goldenseal extract and three goldenseal alkaloids (berberine, (-)-ß-hydrastine, hydrastinine) were tested as inhibitors of organic cation transporter (OCT) 3, plasma membrane monoamine transporter (PMAT), and thiamine transporter (THTR) 2 using human embryonic kidney 293 cells overexpressing each transporter. The goldenseal extract, normalized to berberine content, was the strongest inhibitor of each transporter (IC50: 4.9, 13.1, and 5.8 µM for OCT3, PMAT, and THTR2, respectively). A pharmacokinetic study in mice compared the effects of berberine, (-)-ß-hydrastine, goldenseal extract, and imatinib (OCT inhibitor) on orally administered metformin. Goldenseal extract and imatinib significantly decreased metformin Cmax by 31% and 25%, respectively, and had no effect on half-life. Berberine and (-)-ß-hydrastine had no effect on metformin pharmacokinetics, indicating neither alkaloid alone precipitated the interaction in vivo. A follow-up murine study involving intravenous metformin and oral inhibitors examined the contributions of basolateral enteric/hepatic uptake transporters to the goldenseal-metformin interaction. Goldenseal extract and imatinib had no effect on metformin AUC and half-life, suggesting lack of inhibition of basolateral enteric/hepatic uptake transporters. Results may have implications for patients taking goldenseal with drugs that are substrates for OCT3 and THTR2. SIGNIFICANCE STATEMENT: Goldenseal is used to self-treat respiratory infections and digestive disorders. We investigated potential mechanisms for the clinical pharmacokinetic interaction observed between goldenseal and metformin, specifically inhibition by goldenseal of intestinal uptake transporters (OCT3, PMAT, THTR2) involved in metformin absorption. Goldenseal extract inhibited all three transporters in vitro and decreased metformin systemic exposure in mice. These data may have broader implications for patients co-consuming goldenseal with other drugs that are substrates for these transporters.


Assuntos
Alcaloides , Berberina , Hydrastis , Metformina , Humanos , Animais , Camundongos , Metformina/farmacocinética , Hydrastis/química , Mesilato de Imatinib , Proteínas de Membrana Transportadoras , Proteínas de Transporte de Cátions Orgânicos/metabolismo
6.
Ther Drug Monit ; 45(4): 539-545, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645711

RESUMO

BACKGROUND: Fexofenadine is a recommended in vivo probe drug for phenotyping P-glycoprotein (P-gp) and organic anion transporting polypeptide (OATP) 1B1/3 transporter activities. This study evaluated a limited sampling strategy using a population pharmacokinetic approach to estimate plasma fexofenadine exposure as an index of P-gp and OATP activities. METHODS: In a previous study, a single oral dose of fexofenadine (120 mg) was administered alone or in combination with grapefruit juice, Panax ginseng , or Echinacea purpurea to healthy adult participants. Serial plasma samples were collected up to 72 hours after administration and fexofenadine concentrations were measured. A population pharmacokinetic model was developed using nonlinear mixed-effects modeling. Limited sampling models (LSMs) using single and 2-timepoint fexofenadine concentrations were compared with full profiles from intense sampling using empirical Bayesian post hoc estimations of systemic exposure derived from the population pharmacokinetic model. Predefined criteria for LSM selection and validation included a coefficient of determination (R 2 ) ≥ 0.90, relative percent mean prediction error ≥ -5 to ≤5%, relative percent mean absolute error ≤ 10%, and relative percent root mean square error ≤ 15%. RESULTS: Fexofenadine concentrations (n = 1520) were well described using a 2-compartment model. Grapefruit juice decreased the relative oral bioavailability of fexofenadine by 25%, whereas P. ginseng and E. purpurea had no effect. All the evaluated single timepoint fexofenadine LSMs showed unacceptable percent mean prediction error, percent mean absolute error, and/or percent root mean square error. Although adding a second time point improved precision, the predefined criteria were not met. CONCLUSIONS: Identifying novel fexofenadine LSMs to estimate P-gp and OATP1B1/3 activities in healthy adults for future transporter-mediated drug-drug interaction studies remains elusive.


Assuntos
Citrus paradisi , Transportadores de Ânions Orgânicos , Adulto , Humanos , Teorema de Bayes , Terfenadina/farmacocinética , Preparações Farmacêuticas
7.
J Biomed Inform ; 140: 104341, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36933632

RESUMO

BACKGROUND: Pharmacokinetic natural product-drug interactions (NPDIs) occur when botanical or other natural products are co-consumed with pharmaceutical drugs. With the growing use of natural products, the risk for potential NPDIs and consequent adverse events has increased. Understanding mechanisms of NPDIs is key to preventing or minimizing adverse events. Although biomedical knowledge graphs (KGs) have been widely used for drug-drug interaction applications, computational investigation of NPDIs is novel. We constructed NP-KG as a first step toward computational discovery of plausible mechanistic explanations for pharmacokinetic NPDIs that can be used to guide scientific research. METHODS: We developed a large-scale, heterogeneous KG with biomedical ontologies, linked data, and full texts of the scientific literature. To construct the KG, biomedical ontologies and drug databases were integrated with the Phenotype Knowledge Translator framework. The semantic relation extraction systems, SemRep and Integrated Network and Dynamic Reasoning Assembler, were used to extract semantic predications (subject-relation-object triples) from full texts of the scientific literature related to the exemplar natural products green tea and kratom. A literature-based graph constructed from the predications was integrated into the ontology-grounded KG to create NP-KG. NP-KG was evaluated with case studies of pharmacokinetic green tea- and kratom-drug interactions through KG path searches and meta-path discovery to determine congruent and contradictory information in NP-KG compared to ground truth data. We also conducted an error analysis to identify knowledge gaps and incorrect predications in the KG. RESULTS: The fully integrated NP-KG consisted of 745,512 nodes and 7,249,576 edges. Evaluation of NP-KG resulted in congruent (38.98% for green tea, 50% for kratom), contradictory (15.25% for green tea, 21.43% for kratom), and both congruent and contradictory (15.25% for green tea, 21.43% for kratom) information compared to ground truth data. Potential pharmacokinetic mechanisms for several purported NPDIs, including the green tea-raloxifene, green tea-nadolol, kratom-midazolam, kratom-quetiapine, and kratom-venlafaxine interactions were congruent with the published literature. CONCLUSION: NP-KG is the first KG to integrate biomedical ontologies with full texts of the scientific literature focused on natural products. We demonstrate the application of NP-KG to identify known pharmacokinetic interactions between natural products and pharmaceutical drugs mediated by drug metabolizing enzymes and transporters. Future work will incorporate context, contradiction analysis, and embedding-based methods to enrich NP-KG. NP-KG is publicly available at https://doi.org/10.5281/zenodo.6814507. The code for relation extraction, KG construction, and hypothesis generation is available at https://github.com/sanyabt/np-kg.


Assuntos
Ontologias Biológicas , Produtos Biológicos , Reconhecimento Automatizado de Padrão , Interações Medicamentosas , Semântica , Preparações Farmacêuticas
8.
Int J Clin Pharmacol Ther ; 61(6): 262-269, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37042268

RESUMO

OBJECTIVE: Fexofenadine is a probe drug used to phenotype P-glycoprotein (P-gp) and organic anion transporting polypeptide (OATP) 1B1/3 activities. This study evaluated a limited sampling strategy using plasma concentrations and/or partial area under the concentration versus time curves (AUCs) to estimate systemic exposure and, potentially, P-gp and OATP1B1/3 activities. MATERIALS AND METHODS: Plasma concentration versus time data were obtained from 53 healthy adult participants (22 females) from four published studies. Participants were administered a single oral dose (120 mg) of fexofenadine during constitutive P-gp and OATP1B1/3 conditions. Concentration-time data were divided into a training (n = 18) and validation (n = 35) set. Backwards stepwise linear regression generated single-, 2-timepoint, and partial AUC limited sampling models (LSMs). Noncompartmental analysis methods were used to determine total AUC (AUC0-lNF) from intensive sampling. Coefficient of determination (r2) and bias and precision were assessed via relative percent mean prediction error (%MPE), relative percent mean absolute error (%MAE), and relative percent root mean square error (%RMSE). RESULTS: The geometric mean observed AUC0-INF was 1,680 ng×h/mL. The 2-, 5-, and 2- plus 5-hour LSMs met backwards stepwise linear regression significance (p < 0.15) to remain in the model but had unacceptable %RMSE (17 - 29%). The majority of partial AUC LSMs had unacceptable r2 (0.21 - 0.83), with all models having unacceptable %MAE (12 - 35%). CONCLUSION: Fexofenadine limited sampling strategy using single-timepoint, 2-timepoint, and partial AUCs were unable to accurately estimate AUC0-lNF and thus constitutive P-gp and OATB1B1/3 activities in healthy adults. Timepoints that were not measured or selected may have improved LSM performance.


Assuntos
Fenótipo , Feminino , Humanos , Área Sob a Curva
9.
Drug Metab Dispos ; 50(4): 351-360, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115300

RESUMO

We previously reported the unbound reversible (IC50,u) and time-dependent (KI,u) inhibition potencies of cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC), and THC metabolites 11-hydroxy THC (11-OH THC) and 11-nor-9-carboxy-delta-9-THC (11-COOH THC) against the major cytochrome P450 (P450) enzymes (1A2, 2C9, 2C19, 2D6, and 3A). Here, using human liver microsomes, we determined the CYP2A6, 2B6, and 2C8 IC50,u values of the aforementioned cannabinoids and the IC50,u and KI,u of the circulating CBD metabolites 7-hydroxy CBD (7-OH CBD) and 7-carboxy CBD (7-COOH CBD), against all the P450s listed above. The IC50,u of CBD, 7-OH CBD, THC, and 11-OH THC against CYP2B6 was 0.05, 0.34, 0.40, and 0.32 µM, respectively, and against CYP2C8 was 0.28, 1.02, 0.67, and 3.66 µM, respectively. 7-COOH CBD, but not 11-COOH THC, was a weak inhibitor of CYP2B6 and 2C8. All tested cannabinoids except 11-COOH THC were weak inhibitors of CYP2A6. 7-OH CBD inhibited all P450s examined (IC50,u<2.5 µM) except CYP1A2 and inactivated CYP2C19 and CYP3A, with inactivation efficiencies (kinact/KI,u) of 0.10 and 0.14 minutes-1 µM-1, respectively. Using several different static models, we predicted the following maximum pharmacokinetic interactions (affected P450 probe drug and area under the plasma concentration-time curve ratio) between oral CBD (700 mg) and drugs predominantly metabolized by CYP3A (midazolam, 14.8) > 2C9 (diclofenac, 9.6) > 2C19 (omeprazole, 7.3) > 1A2 (theophylline, 4.0) > 2B6 (ticlopidine, 2.2) > 2D6 (dextromethorphan, 2.1) > 2C8 (repaglinide, 1.6). Oral (130 mg) or inhaled (75 mg) THC was predicted to precipitate interactions with drugs predominately metabolized by CYP2C9 (diclofenac, 6.6 or 2.3, respectively) > 3A (midazolam, 1.8) > 1A2 (theophylline, 1.4). In vivo drug interaction studies are warranted to verify these predictions. SIGNIFICANCE STATEMENT: This study, combined with our previous findings, provides for the first time a comprehensive analysis of the potential for cannabidiol, delta-9-tetrahydrocannabinol, and their metabolites to inhibit cytochrome P450 enzymes in a reversible or time-dependent manner. These analyses enabled us to predict the potential of these cannabinoids to produce drug interactions in vivo at clinical or recreational doses.


Assuntos
Canabinoides , Microssomos Hepáticos , Canabinoides/metabolismo , Canabinoides/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Dronabinol/metabolismo , Dronabinol/farmacologia , Interações Medicamentosas , Humanos , Microssomos Hepáticos/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-33468464

RESUMO

Neglected diseases caused by arenaviruses such as Lassa virus (LASV) and filoviruses like Ebola virus (EBOV) primarily afflict resource-limited countries, where antiviral drug development is often minimal. Previous studies have shown that many approved drugs developed for other clinical indications inhibit EBOV and LASV and that combinations of these drugs provide synergistic suppression of EBOV, often by blocking discrete steps in virus entry. We hypothesize that repurposing of combinations of orally administered approved drugs provides effective suppression of arenaviruses. In this report, we demonstrate that arbidol, an approved influenza antiviral previously shown to inhibit EBOV, LASV, and many other viruses, inhibits murine leukemia virus (MLV) reporter viruses pseudotyped with the fusion glycoproteins (GPs) of other arenaviruses (Junin virus [JUNV], lymphocytic choriomeningitis virus [LCMV], and Pichinde virus [PICV]). Arbidol and other approved drugs, including aripiprazole, amodiaquine, sertraline, and niclosamide, also inhibit infection of cells by infectious PICV, and arbidol, sertraline, and niclosamide inhibit infectious LASV. Combining arbidol with aripiprazole or sertraline results in the synergistic suppression of LASV and JUNV GP-bearing pseudoviruses. This proof-of-concept study shows that arenavirus infection in vitro can be synergistically inhibited by combinations of approved drugs. This approach may lead to a proactive strategy with which to prepare for and control known and new arenavirus outbreaks.


Assuntos
Antivirais/uso terapêutico , Infecções por Arenaviridae/tratamento farmacológico , Arenavirus/efeitos dos fármacos , Administração Oral , Animais , Infecções por Arenaviridae/virologia , Linhagem Celular , Chlorocebus aethiops , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Células HEK293 , Humanos , Camundongos , Estudo de Prova de Conceito , Células Vero
11.
J Pharmacol Exp Ther ; 376(1): 64-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093187

RESUMO

Preparations from the leaves of the kratom plant (Mitragyna speciosa) are consumed for their opioid-like effects. Several deaths have been associated with kratom used concomitantly with some drugs. Pharmacokinetic interactions are potential underlying mechanisms of these fatalities. Accumulating in vitro evidence has demonstrated select kratom alkaloids, including the abundant indole alkaloid mitragynine, as reversible inhibitors of several cytochromes P450 (CYPs). The objective of this work was to refine the mechanistic understanding of potential kratom-drug interactions by considering both reversible and time-dependent inhibition (TDI) of CYPs in the liver and intestine. Mitragynine was tested against CYP2C9 (diclofenac 4'-hydroxylation), CYP2D6 (dextromethorphan O-demethylation), and CYP3A (midazolam 1'-hydroxylation) activities in human liver microsomes (HLMs) and CYP3A activity in human intestinal microsomes (HIMs). Comparing the absence to presence of NADPH during preincubation of mitragynine with HLMs or HIMs, an ∼7-fold leftward shift in IC50 (∼20 to 3 µM) toward CYP3A resulted, prompting determination of TDI parameters (HLMs: K I , 4.1 ± 0.9 µM; k inact , 0.068 ± 0.01 min-1; HIMs: K I , 4.2 ± 2.5 µM; k inact , 0.079 ± 0.02 min-1). Mitragynine caused no leftward shift in IC50 toward CYP2C9 (∼40 µM) and CYP2D6 (∼1 µM) but was a strong competitive inhibitor of CYP2D6 (K i , 1.17 ± 0.07 µM). Using a recommended mechanistic static model, mitragynine (2-g kratom dose) was predicted to increase dextromethorphan and midazolam area under the plasma concentration-time curve by 1.06- and 5.69-fold, respectively. The predicted midazolam area under the plasma concentration-time curve ratio exceeded the recommended cutoff (1.25), which would have been missed if TDI was not considered. SIGNIFICANCE STATEMENT: Kratom, a botanical natural product increasingly consumed for its opioid-like effects, may precipitate potentially serious pharmacokinetic interactions with drugs. The abundant kratom indole alkaloid mitragynine was shown to be a time-dependent inhibitor of hepatic and intestinal cytochrome P450 3A activity. A mechanistic static model predicted mitragynine to increase systemic exposure to the probe drug substrate midazolam by 5.7-fold, necessitating further evaluation via dynamic models and clinical assessment to advance the understanding of consumer safety associated with kratom use.


Assuntos
Dextrometorfano/farmacocinética , Midazolam/farmacocinética , Alcaloides de Triptamina e Secologanina/farmacocinética , Família 2 do Citocromo P450/antagonistas & inibidores , Interações Medicamentosas , Humanos , Mucosa Intestinal/metabolismo , Microssomos Hepáticos/metabolismo
12.
Phytother Res ; 35(6): 3286-3297, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33587330

RESUMO

Silybum marianum (L.) Gaertn. (Asteraceae), commonly known as milk thistle, is a botanical natural product used to self-treat multiple diseases such as Type 2 diabetes mellitus and nonalcoholic steatohepatitis (NASH). An extract from milk thistle seeds (achenes), termed silymarin, is comprised primarily of several flavonolignans. Systemic concentrations of these flavonolignans can influence the potential biologic effects of silymarin and the risk for pharmacokinetic silymarin-drug interactions. The aims of this research were to determine the roles of organic anion transporting polypeptides (OATPs/Oatps) in silymarin flavonolignan disposition and in pharmacokinetic silymarin-drug interactions. The seven major flavonolignans from silymarin were determined to be substrates for OATP1B1, OATP1B3, and OATP2B1. Sprague Dawley rats were fed either a control diet or a NASH-inducing diet and administered pitavastatin (OATP/Oatp probe substrate), followed by silymarin via oral gavage. Decreased protein expression of Oatp1b2 and Oatp1a4 in NASH animals increased flavonolignan area under the plasma concentration-time curve (AUC) and maximum plasma concentration. The combination of silymarin inhibition of Oatps and NASH-associated decrease in Oatp expression caused an additive increase in plasma pitavastatin AUC in the animals. These data indicate that OATPs/Oatps contribute to flavonolignan cellular uptake and mediate the interaction between silymarin and NASH on pitavastatin systemic exposure.


Assuntos
Flavonolignanos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Silybum marianum/química , Silimarina/metabolismo , Animais , Antioxidantes/metabolismo , Interações Medicamentosas , Flavonoides/metabolismo , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Quinolinas/farmacocinética , Ratos , Ratos Sprague-Dawley
13.
Drug Metab Dispos ; 48(10): 956-962, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32816868

RESUMO

Natural products have been used by humans since antiquity for both egregious and beneficial purposes. Regarding the latter, these products have long been valued as a rich source of phytochemicals and developed into numerous life-saving pharmaceutical agents. Today, the sales and use of natural products with purported medicinal qualities continue to increase worldwide. However, natural products are not subject to the same premarket testing requirements as pharmaceutical agents, creating critical gaps in scientific knowledge about their optimal use. In addition, due to the common misperception that "natural" means "safe," patients may supplement or replace their prescription medications with natural products, placing themselves at undue risk for subefficacious pharmacotherapy or potentially toxic exposure. Collectively, with few exceptions, researchers, health care providers, and educators lack definitive information about how to inform consumers, patients, and students in the health professions on the safe and optimal use of these products. Recognition of this deficiency by key stakeholders, including the three pillars of biomedical research-industry, academia, and government-has facilitated multiple collaborations that are actively addressing this fundamental knowledge gap. This special issue contains a collection of articles highlighting the challenges faced by researchers in the field and the use of various experimental systems and methods to improve the mechanistic understanding of the disposition and drug interaction potential of natural products. Continued refinement of existing, and development of new, approaches will progress toward the common overarching goal of improving public health. SIGNIFICANCE STATEMENT: Natural products with purported medicinal value constitute an increasing share of the contemporary health care market. Natural products are not subject to the same premarket testing requirements as drug products, creating fundamental scientific knowledge gaps about the safe and effective use of these products. Collaborations among industrial, academic, and governmental researchers in multiple disciplines are anticipated to provide the definitive information needed to fill these gaps and improve public health.


Assuntos
Produtos Biológicos/farmacocinética , Medicamentos sob Prescrição/farmacocinética , Produtos Biológicos/administração & dosagem , Células Cultivadas , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Hepatócitos , Humanos , Microssomos Hepáticos , Medicamentos sob Prescrição/administração & dosagem
14.
Drug Metab Dispos ; 48(10): 1008-1017, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32587099

RESUMO

Cannabis is used for both recreational and medicinal purposes. The most abundant constituents are the cannabinoids - cannabidiol (CBD, nonpsychoactive) and (-)-trans-Δ9-tetrahydrocannabinol (THC, psychoactive). Both have been reported to reversibly inhibit or inactivate cytochrome P450 (CYPs) enzymes. However, the low aqueous solubility, microsomal protein binding, and nonspecific binding to labware were not considered, potentially leading to an underestimation of CYPs inhibition potency. Therefore, the binding-corrected reversible (IC50,u) and irreversible (K I,u ) inhibition potency of each cannabinoid toward major CYPs were determined. The fraction unbound of CBD and THC in the incubation mixture was 0.12 ± 0.04 and 0.05 ± 0.02, respectively. The IC50,u for CBD toward CYP1A2, 2C9, 2C19, 2D6, and 3A was 0.45 ± 0.17, 0.17 ± 0.03, 0.30 ± 0.06, 0.95 ± 0.50, and 0.38 ± 0.11 µM, respectively; the IC50,u for THC was 0.06 ± 0.02, 0.012 ± 0.001, 0.57 ± 0.22, 1.28 ± 0.25, and 1.30 ± 0.34 µM, respectively. Only CBD showed time-dependent inactivation (TDI) of CYP1A2, 2C19, and CYP3A, with inactivation efficiencies (k inact/K I,u) of 0.70 ± 0.34, 0.11 ± 0.06, and 0.14 ± 0.04 minutes-1 µM-1, respectively. A combined (reversible inhibition and TDI) mechanistic static model populated with these data predicted a moderate to strong pharmacokinetic interaction risk between orally administered CBD and drugs extensively metabolized by CYP1A2/2C9/2C19/2D6/3A and between orally administered THC and drugs extensively metabolized by CYP1A2/2C9/3A. These predictions will be extended to a dynamic model using physiologically based pharmacokinetic modeling and simulation and verified with a well-designed clinical cannabinoid-drug interaction study. SIGNIFICANCE STATEMENT: This study is the first to consider the impact of limited aqueous solubility, nonspecific binding to labware, or extensive binding to incubation protein shown by cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) on their true cytochrome P450 inhibitory potency. A combined mechanistic static model predicted a moderate to strong pharmacokinetic interaction risk between orally administered CBD and drugs extensively metabolized by CYP1A2, 2C9, 2C19, 2D6, or 3A and between orally administered THC and drugs extensively metabolized by CYP1A2, 2C9, or 3A.


Assuntos
Canabidiol/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Dronabinol/farmacocinética , Administração Oral , Adulto , Canabidiol/administração & dosagem , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Dronabinol/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos
15.
Drug Metab Dispos ; 48(10): 1018-1027, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32591416

RESUMO

Botanical and other natural products (NPs) are often coconsumed with prescription medications, presenting a risk for cytochrome P450 (P450)-mediated NP-drug interactions. The NP goldenseal (Hydrastis canadensis) has exhibited antimicrobial activities in vitro attributed to isoquinoline alkaloids contained in the plant, primarily berberine, (-)-ß-hydrastine, and to a lesser extent, hydrastinine. These alkaloids contain methylenedioxyphenyl rings, structural alerts with potential to inactivate P450s through formation of metabolic intermediate complexes. Time-dependent inhibition experiments were conducted to evaluate their ability to inhibit major P450 activities in human liver microsomes by using a cocktail of isozyme-specific substrate probes. Berberine inhibited CYP2D6 (dextromethorphan O-demethylation; K I = 2.7 µM, kinact = 0.065 minute-1) and CYP3A4/5 (midazolam 1'-hydroxylation; K I = 14.8 µM, kinact = 0.019 minute-1); (-)-ß-hydrastine inhibited CYP2C9 (diclofenac 4'-hydroxylation; K I = 49 µM, kinact = 0.036 minute-1), CYP2D6 (K I > 250 µM, kinact > 0.06 minute-1), and CYP3A4/5 (K I = 28 µM, kinact = 0.056 minute-1); and hydrastinine inhibited CYP2D6 (K I = 37 µM, kinact = 0.049 minute-1) activity. Berberine additionally exhibited allosteric effects on midazolam hydroxylation, showing both positive and negative heterotropic cooperativity. Experiments with recombinant isozymes showed that berberine activated midazolam 1'-hydroxylation by CYP3A5, lowering K m(app), but showed mixed inhibition and negative cooperativity toward this reaction when catalyzed by CYP3A4. Berberine inactivated CYP3A4 at a much faster rate than CYP3A5 and was a noncompetitive inhibitor of midazolam 4-hydroxylation by CYP3A4 but a strong mixed inhibitor of the CYP3A5 catalyzed reaction. These complex kinetics should be considered when extrapolating the risk for NP-drug interactions involving goldenseal. SIGNIFICANCE STATEMENT: Robust kinetic parameters were determined for the reversible and time-dependent inhibition of CYP2C9, CYP2D6, and CYP3A4/5 activities in human liver microsomes by major component isoquinoline alkaloids contained in the botanical natural product goldenseal. The alkaloid berberine also exhibited opposing, isozyme-specific allosteric effects on midazolam hydroxylation mediated by recombinant CYP3A4 (inhibition) and CYP3A5 (activation). These data will inform the development of a physiologically based pharmacokinetic model that can be used to predict potential clinically relevant goldenseal-drug interactions.


Assuntos
Alcaloides/farmacocinética , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Hydrastis/química , Extratos Vegetais/farmacocinética , Medicamentos sob Prescrição/farmacocinética , Alcaloides/administração & dosagem , Regulação Alostérica , Proteínas de Arabidopsis , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Microssomos Hepáticos , Proteínas Nucleares , Oxirredução , Extratos Vegetais/administração & dosagem , Medicamentos sob Prescrição/administração & dosagem
16.
Drug Metab Dispos ; 48(10): 1104-1112, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32601103

RESUMO

There are many gaps in scientific knowledge about the clinical significance of pharmacokinetic natural product-drug interactions (NPDIs) in which the natural product (NP) is the precipitant and a conventional drug is the object. The National Center for Complimentary and Integrative Health created the Center of Excellence for NPDI Research (NaPDI Center) (www.napdi.org) to provide leadership and guidance on the study of pharmacokinetic NPDIs. A key contribution of the Center is the first user-friendly online repository that stores and links pharmacokinetic NPDI data across chemical characterization, metabolomics analyses, and pharmacokinetic in vitro and clinical experiments (repo.napdi.org). The design is expected to help researchers more easily arrive at a complete understanding of pharmacokinetic NPDI research on a particular NP. The repository will also facilitate multidisciplinary collaborations, as the repository links all of the experimental data for a given NP across the study types. The current work describes the design of the repository, standard operating procedures used to enter data, and pharmacokinetic NPDI data that have been entered to date. To illustrate the usefulness of the NaPDI Center repository, more details on two high-priority NPs, cannabis and kratom, are provided as case studies. SIGNIFICANCE STATEMENT: The data and knowledge resulting from natural product-drug interaction (NPDI) studies is distributed across a variety of information sources, rendering difficulties to find, access, and reuse. The Center of Excellence for NPDI Research addressed these difficulties by developing the first user-friendly online repository that stores data from in vitro and clinical pharmacokinetic NPDI experiments and links them with study data from chemical characterization and metabolomics analyses of natural products that are also stored in the repository.


Assuntos
Produtos Biológicos/farmacocinética , Bases de Dados de Produtos Farmacêuticos , Interações Medicamentosas , Medicamentos sob Prescrição/farmacocinética , Produtos Biológicos/química , Química Farmacêutica , Metabolômica , Medicamentos sob Prescrição/química
17.
Regul Toxicol Pharmacol ; 113: 104642, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32197968

RESUMO

During the 25 years since the US Congress passed the Dietary Supplement Health and Education Act (DSHEA), the law that transformed the US Food and Drug Administration's (FDA's) authority to regulate dietary supplements, the dietary supplement market has grown exponentially. Retail sales of herbal products, a subcategory of dietary supplements, have increased 83% from 2008 to 2018 ($4.8 to $8.8 billion USD). Although consumers often equate "natural" with "safe", it is well recognized by scientists that constituents in these natural products (NPs) can result in toxicity. Additionally, when NPs are co-consumed with pharmaceutical agents, the precipitant NP can alter drug disposition and drug delivery, thereby enhancing or reducing the therapeutic effect of the object drug(s). With the widespread use of NPs, these effects can be underappreciated. We present a summary of a symposium presented at the Annual Meeting of the Society of Toxicology 2019 (12 March 2019) that discussed potential toxicities of NPs alone and in combination with drugs.


Assuntos
Produtos Biológicos/efeitos adversos , Legislação sobre Alimentos , Preparações Farmacêuticas , Produtos Biológicos/administração & dosagem , Suplementos Nutricionais , Humanos , Marketing , Preparações Farmacêuticas/administração & dosagem , Estados Unidos , United States Food and Drug Administration
18.
Nat Prod Rep ; 36(8): 1196-1221, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30681109

RESUMO

Covering: up to the end of 2018 Dietary supplements, which include botanical (plant-based) natural products, constitute a multi-billion-dollar industry in the US. Regulation and quality control for this industry is an ongoing challenge. While there is general agreement that rigorous scientific studies are needed to evaluate the safety and efficacy of botanical natural products used by consumers, researchers conducting such studies face a unique set of challenges. Botanical natural products are inherently complex mixtures, with composition that differs depending on myriad factors including variability in genetics, cultivation conditions, and processing methods. Unfortunately, many studies of botanical natural products are carried out with poorly characterized study material, such that the results are irreproducible and difficult to interpret. This review provides recommended approaches for addressing the critical questions that researchers must address prior to in vitro or in vivo (including clinical) evaluation of botanical natural products. We describe selection and authentication of botanical material and identification of key biologically active compounds, and compare state-of-the-art methodologies such as untargeted metabolomics with more traditional targeted methods of characterization. The topics are chosen to be of maximal relevance to researchers, and are reviewed critically with commentary as to which approaches are most practical and useful and what common pitfalls should be avoided.


Assuntos
Plantas/química , Animais , Produtos Biológicos , Suplementos Nutricionais , Humanos , Estrutura Molecular , Extratos Vegetais , Controle de Qualidade , Pesquisa
19.
J Pharmacol Exp Ther ; 371(2): 385-393, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420525

RESUMO

Patients with nonalcoholic steatohepatitis (NASH) exhibit altered hepatic protein expression of metabolizing enzymes and transporters and altered xenobiotic pharmacokinetics. The botanical natural product silymarin, which has been investigated as a treatment of NASH, contains flavonolignans that inhibit organic anion-transporting polypeptide (OATP) transporter function. The purpose of this study was to assess the individual and combined effects of NASH and silymarin on the disposition of the model OATP substrate pitavastatin. Male Sprague Dawley rats were fed a control or a methionine- and choline-deficient diet (NASH model) for 8 weeks. Silymarin (10 mg/kg) or vehicle followed by pitavastatin (0.5 mg/kg) were administered intravenously, and the pharmacokinetics were determined. NASH increased mean total flavonolignan area under the plasma concentration-time curve (AUC0-120 min) 1.7-fold. Silymarin increased pitavastatin AUC0-120 min in both control and NASH animals approx. 2-fold. NASH increased pitavastatin plasma concentrations from 2 to 40 minutes, but AUC0-120 min was unchanged. The combination of silymarin and NASH had the greatest effect on pitavastatin AUC0-120 min, which increased 2.9-fold compared with control vehicle-treated animals. NASH increased the total amount of pitavastatin excreted into the bile 2.7-fold compared with control animals, whereas silymarin decreased pitavastatin biliary clearance approx. 3-fold in both control and NASH animals. This double hit of NASH and silymarin on hepatic uptake transporters is another example of a multifactorial pharmacokinetic interaction that may have a greater impact on drug disposition than each hit alone. SIGNIFICANCE STATEMENT: Multifactorial effects on xenobiotic pharmacokinetics are within the next frontier for precision medicine research and clinical application. The combination of silymarin and NASH is a probable clinical scenario that can affect drug uptake, liver concentrations, biliary elimination, and ultimately, efficacy and toxicity.


Assuntos
Antioxidantes/farmacocinética , Produtos Biológicos/farmacocinética , Modelos Animais de Doenças , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Silimarina/farmacocinética , Animais , Antioxidantes/uso terapêutico , Produtos Biológicos/uso terapêutico , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Células HEK293 , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Silimarina/uso terapêutico
20.
Drug Metab Dispos ; 47(7): 724-731, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31028057

RESUMO

Midazolam is a widely used index substrate for assessing effects of xenobiotics on CYP3A activity. A previous study involving human hepatocytes showed the primary route of midazolam metabolism, 1'-hydroxylation, shifted to N-glucuronidation in the presence of the CYP3A inhibitor ketoconazole, which may lead to an overprediction of the magnitude of a xenobiotic-midazolam interaction. Because ketoconazole is no longer recommended as a clinical CYP3A inhibitor, indinavir was selected as an alternate CYP3A inhibitor to evaluate the contribution of the N-glucuronidation pathway to midazolam metabolism. The effects of indinavir on midazolam 1'-hydroxylation and N-glucuronidation were first characterized in human-derived in vitro systems. Compared with vehicle, indinavir (10 µM) inhibited midazolam 1'-hydroxylation by recombinant CYP3A4, human liver microsomes, and high-CYP3A activity cryopreserved human hepatocytes by ≥70%; the IC50 obtained with hepatocytes (2.7 µM) was within reported human unbound indinavir Cmax (≤5 µM). Midazolam N-glucuronidation in hepatocytes increased in the presence of indinavir in both a concentration-dependent (1-33 µM) and time-dependent (0-4 hours) manner (by up to 2.5-fold), prompting assessment in human volunteers (n = 8). As predicted by these in vitro data, indinavir was a strong inhibitor of the 1'-hydroxylation pathway, decreasing the 1'-hydroxymidazolam/midazolam area under the plasma concentration versus time curve (AUC)0-12h ratio by 80%. Although not statistically significant, the midazolam N-glucuronide/midazolam AUC0-12h ratio increased by 40%, suggesting a shift to the N-glucuronidation pathway. The amount of midazolam N-glucuronide recovered in urine increased 4-fold but remained <10% of the oral midazolam dose (2.5 mg). A powered clinical study would clarify whether N-glucuronidation should be considered when assessing the magnitude of a xenobiotic-midazolam interaction.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Glucuronídeos/metabolismo , Inibidores da Protease de HIV/farmacologia , Indinavir/farmacologia , Midazolam/farmacocinética , Estudos Cross-Over , Interações Medicamentosas , Feminino , Hepatócitos/metabolismo , Humanos , Hidroxilação , Técnicas In Vitro , Masculino , Midazolam/sangue , Midazolam/urina , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA