Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Bull Math Biol ; 86(3): 28, 2024 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-38341397

RESUMO

Aggregations are emergent features common to many biological systems. Mathematical models to understand their emergence are consequently widespread, with the aggregation-diffusion equation being a prime example. Here we study the aggregation-diffusion equation with linear diffusion in one spatial dimension. This equation is known to support solutions that involve both single and multiple aggregations. However, numerical evidence suggests that the latter, which we term 'multi-peaked solutions' may often be long-transient solutions rather than asymptotic steady states. We develop a novel technique for distinguishing between long transients and asymptotic steady states via an energy minimisation approach. The technique involves first approximating our study equation using a limiting process and a moment closure procedure. We then analyse local minimum energy states of this approximate system, hypothesising that these will correspond to asymptotic patterns in the aggregation-diffusion equation. Finally, we verify our hypotheses through numerical investigation, showing that our approximate analytic technique gives good predictions as to whether a state is asymptotic or transient. Overall, we find that almost all twin-peaked, and by extension multi-peaked, solutions are transient, except for some very special cases. We demonstrate numerically that these transients can be arbitrarily long-lived, depending on the parameters of the system.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Difusão
2.
J Math Biol ; 88(3): 32, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407620

RESUMO

Collective cell migration is a multicellular phenomenon that arises in various biological contexts, including cancer and embryo development. 'Collectiveness' can be promoted by cell-cell interactions such as co-attraction and contact inhibition of locomotion. These mechanisms act on cell polarity, pivotal for directed cell motility, through influencing the intracellular dynamics of small GTPases such as Rac1. To model these dynamics we introduce a biased random walk model, where the bias depends on the internal state of Rac1, and the Rac1 state is influenced by cell-cell interactions and chemoattractive cues. In an extensive simulation study we demonstrate and explain the scope and applicability of the introduced model in various scenarios. The use of a biased random walk model allows for the derivation of a corresponding partial differential equation for the cell density while still maintaining a certain level of intracellular detail from the individual based setting.


Assuntos
Quimiotaxia , Crista Neural , Locomoção , Movimento Celular , Comunicação Celular
3.
J Math Biol ; 88(1): 4, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015257

RESUMO

Malignant gliomas are notoriously invasive, a major impediment against their successful treatment. This invasive growth has motivated the use of predictive partial differential equation models, formulated at varying levels of detail, and including (i) "proliferation-infiltration" models, (ii) "go-or-grow" models, and (iii) anisotropic diffusion models. Often, these models use macroscopic observations of a diffuse tumour interface to motivate a phenomenological description of invasion, rather than performing a detailed and mechanistic modelling of glioma cell invasion processes. Here we close this gap. Based on experiments that support an important role played by long cellular protrusions, termed tumour microtubes, we formulate a new model for microtube-driven glioma invasion. In particular, we model a population of tumour cells that extend tissue-infiltrating microtubes. Mitosis leads to new nuclei that migrate along the microtubes and settle elsewhere. A combination of steady state analysis and numerical simulation is employed to show that the model can predict an expanding tumour, with travelling wave solutions led by microtube dynamics. A sequence of scaling arguments allows us reduce the detailed model into simpler formulations, including models falling into each of the general classes (i), (ii), and (iii) above. This analysis allows us to clearly identify the assumptions under which these various models can be a posteriori justified in the context of microtube-driven glioma invasion. Numerical simulations are used to compare the various model classes and we discuss their advantages and disadvantages.


Assuntos
Glioma , Humanos , Anisotropia , Simulação por Computador , Difusão , Viagem
4.
PLoS Biol ; 17(2): e3000132, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30789897

RESUMO

Feathers are arranged in a precise pattern in avian skin. They first arise during development in a row along the dorsal midline, with rows of new feather buds added sequentially in a spreading wave. We show that the patterning of feathers relies on coupled fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) signalling together with mesenchymal cell movement, acting in a coordinated reaction-diffusion-taxis system. This periodic patterning system is partly mechanochemical, with mechanical-chemical integration occurring through a positive feedback loop centred on FGF20, which induces cell aggregation, mechanically compressing the epidermis to rapidly intensify FGF20 expression. The travelling wave of feather formation is imposed by expanding expression of Ectodysplasin A (EDA), which initiates the expression of FGF20. The EDA wave spreads across a mesenchymal cell density gradient, triggering pattern formation by lowering the threshold of mesenchymal cells required to begin to form a feather bud. These waves, and the precise arrangement of feather primordia, are lost in the flightless emu and ostrich, though via different developmental routes. The ostrich retains the tract arrangement characteristic of birds in general but lays down feather primordia without a wave, akin to the process of hair follicle formation in mammalian embryos. The embryonic emu skin lacks sufficient cells to enact feather formation, causing failure of tract formation, and instead the entire skin gains feather primordia through a later process. This work shows that a reaction-diffusion-taxis system, integrated with mechanical processes, generates the feather array. In flighted birds, the key role of the EDA/Ectodysplasin A receptor (EDAR) pathway in vertebrate skin patterning has been recast to activate this process in a quasi-1-dimensional manner, imposing highly ordered pattern formation.


Assuntos
Padronização Corporal , Plumas/citologia , Plumas/embriologia , Transdução de Sinais , Animais , Fenômenos Biomecânicos , Aves/embriologia , Agregação Celular , Contagem de Células , Movimento Celular , Forma Celular , Ectodisplasinas/metabolismo , Receptor Edar/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Voo Animal/fisiologia , Mesoderma/citologia , Mesoderma/embriologia , Pele/citologia , Pele/embriologia , beta Catenina/metabolismo
5.
Bull Math Biol ; 84(12): 143, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319913

RESUMO

The capacity to aggregate through chemosensitive movement forms a paradigm of self-organisation, with examples spanning cellular and animal systems. A basic mechanism assumes a phenotypically homogeneous population that secretes its own attractant, with the well known system introduced more than five decades ago by Keller and Segel proving resolutely popular in modelling studies. The typical assumption of population phenotypic homogeneity, however, often lies at odds with the heterogeneity of natural systems, where populations may comprise distinct phenotypes that vary according to their chemotactic ability, attractant secretion, etc. To initiate an understanding into how this diversity can impact on autoaggregation, we propose a simple extension to the classical Keller and Segel model, in which the population is divided into two distinct phenotypes: those performing chemotaxis and those producing attractant. Using a combination of linear stability analysis and numerical simulations, we demonstrate that switching between these phenotypic states alters the capacity of a population to self-aggregate. Further, we show that switching based on the local environment (population density or chemoattractant level) leads to diverse patterning and provides a route through which a population can effectively curb the size and density of an aggregate. We discuss the results in the context of real world examples of chemotactic aggregation, as well as theoretical aspects of the model such as global existence and blow-up of solutions.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Animais , Quimiotaxia , Agregação Celular , Fenótipo
6.
Philos Trans A Math Phys Eng Sci ; 379(2213): 20200270, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34743605

RESUMO

Periodic patterns form intricate arrays in the vertebrate anatomy, notably the hair and feather follicles of the skin, but also internally the villi of the gut and the many branches of the lung, kidney, mammary and salivary glands. These tissues are composite structures, being composed of adjoined epithelium and mesenchyme, and the patterns that arise within them require interaction between these two tissue layers. In embryonic development, cells change both their distribution and state in a periodic manner, defining the size and relative positions of these specialized structures. Their placement is determined by simple spacing mechanisms, with substantial evidence pointing to a variety of local enhancement/lateral inhibition systems underlying the breaking of symmetry. The nature of the cellular processes involved, however, has been less clear. While much attention has focused on intercellular soluble signals, such as protein growth factors, experimental evidence has grown for contributions of cell movement or mechanical forces to symmetry breaking. In the mesenchyme, unlike the epithelium, cells may move freely and can self-organize into aggregates by chemotaxis, or through generation and response to mechanical strain on their surrounding matrix. Different modes of self-organization may coexist, either coordinated into a single system or with hierarchical relationships. Consideration of a broad range of distinct biological processes is required to advance understanding of biological pattern formation. This article is part of the theme issue 'Recent progress and open frontiers in Turing's theory of morphogenesis'.


Assuntos
Modelos Biológicos , Pele , Animais , Morfogênese , Vertebrados
7.
Bull Math Biol ; 83(6): 69, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33973064

RESUMO

Collective migration of cells and animals often relies on a specialised set of "leaders", whose role is to steer a population of naive followers towards some target. We formulate a continuous model to understand the dynamics and structure of such groups, splitting a population into separate follower and leader types with distinct orientation responses. We incorporate leader influence via three principal mechanisms: a bias in the orientation of leaders towards the destination (orientation-bias), a faster movement of leaders when moving towards the target (speed-bias), and leaders making themselves more clear to followers when moving towards the target (conspicuousness-bias). Analysis and numerical computation are used to assess the extent to which the swarm is successfully shepherded towards the target. We find that successful leadership can occur for each of these three mechanisms across a broad region of parameter space, with conspicuousness-bias emerging as the most robust. However, outside this parameter space we also find various forms of unsuccessful leadership. Forms of excessive influence can result in either swarm-splitting, where the leaders break free and followers are left rudderless, or a loss of swarm cohesion that leads to its eventual dispersal. Forms of low influence, on the other hand, can even generate swarms that move away from the target direction. Leadership must therefore be carefully managed to steer the swarm correctly.


Assuntos
Liderança , Conceitos Matemáticos , Animais
8.
PLoS Biol ; 15(7): e2002117, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28700594

RESUMO

Two theories address the origin of repeating patterns, such as hair follicles, limb digits, and intestinal villi, during development. The Turing reaction-diffusion system posits that interacting diffusible signals produced by static cells first define a prepattern that then induces cell rearrangements to produce an anatomical structure. The second theory, that of mesenchymal self-organisation, proposes that mobile cells can form periodic patterns of cell aggregates directly, without reference to any prepattern. Early hair follicle development is characterised by the rapid appearance of periodic arrangements of altered gene expression in the epidermis and prominent clustering of the adjacent dermal mesenchymal cells. We assess the contributions and interplay between reaction-diffusion and mesenchymal self-organisation processes in hair follicle patterning, identifying a network of fibroblast growth factor (FGF), wingless-related integration site (WNT), and bone morphogenetic protein (BMP) signalling interactions capable of spontaneously producing a periodic pattern. Using time-lapse imaging, we find that mesenchymal cell condensation at hair follicles is locally directed by an epidermal prepattern. However, imposing this prepattern's condition of high FGF and low BMP activity across the entire skin reveals a latent dermal capacity to undergo spatially patterned self-organisation in the absence of epithelial direction. This mesenchymal self-organisation relies on restricted transforming growth factor (TGF) ß signalling, which serves to drive chemotactic mesenchymal patterning when reaction-diffusion patterning is suppressed, but, in normal conditions, facilitates cell movement to locally prepatterned sources of FGF. This work illustrates a hierarchy of periodic patterning modes operating in organogenesis.


Assuntos
Folículo Piloso/embriologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Padronização Corporal , Diferenciação Celular , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos , Transdução de Sinais , Pele/citologia , Pele/embriologia , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
J Math Biol ; 81(6-7): 1251-1298, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068155

RESUMO

A rigorous limit procedure is presented which links nonlocal models involving adhesion or nonlocal chemotaxis to their local counterparts featuring haptotaxis and classical chemotaxis, respectively. It relies on a novel reformulation of the involved nonlocalities in terms of integral operators applied directly to the gradients of signal-dependent quantities. The proposed approach handles both model types in a unified way and extends the previous mathematical framework to settings that allow for general solution-dependent coefficient functions. The previous forms of nonlocal operators are compared with the new ones introduced in this paper and the advantages of the latter are highlighted by concrete examples. Numerical simulations in 1D provide an illustration of some of the theoretical findings.


Assuntos
Movimento Celular , Quimiotaxia , Modelos Biológicos , Simulação por Computador
10.
J Math Biol ; 80(1-2): 275-281, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006100

RESUMO

This special issue on "Multiscale phenomena and patterns in biological systems" is an homage to the seminal contributions of Hans Othmer. He has remained at the forefront of multiscale modelling and pattern formation in biology for over half a century, developing models for molecular signalling networks, the mechanics of cellular movements, the interactions between multiple cells and their contributions to tissue patterning and dynamics. The contributions in this special issue follow Hans' legacy in using advanced mathematics to understand complex biological processes.


Assuntos
Biologia/métodos , Matemática/métodos , Modelos Biológicos , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Humanos , Transdução de Sinais/fisiologia
11.
J Theor Biol ; 481: 162-182, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29944856

RESUMO

Chemotaxis is a fundamental guidance mechanism of cells and organisms, responsible for attracting microbes to food, embryonic cells into developing tissues, immune cells to infection sites, animals towards potential mates, and mathematicians into biology. The Patlak-Keller-Segel (PKS) system forms part of the bedrock of mathematical biology, a go-to-choice for modellers and analysts alike. For the former it is simple yet recapitulates numerous phenomena; the latter are attracted to these rich dynamics. Here I review the adoption of PKS systems when explaining self-organisation processes. I consider their foundation, returning to the initial efforts of Patlak and Keller and Segel, and briefly describe their patterning properties. Applications of PKS systems are considered in their diverse areas, including microbiology, development, immunology, cancer, ecology and crime. In each case a historical perspective is provided on the evidence for chemotactic behaviour, followed by a review of modelling efforts; a compendium of the models is included as an Appendix. Finally, a half-serious/half-tongue-in-cheek model is developed to explain how cliques form in academia. Assumptions in which scholars alter their research line according to available problems leads to clustering of academics and the formation of "hot" research topics.


Assuntos
Movimento Celular/fisiologia , Modelos Biológicos , Animais , Humanos
12.
J Theor Biol ; 437: 225-238, 2018 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-29097151

RESUMO

The orderly formation of the avian feather array is a classic example of periodic pattern formation during embryonic development. Various mathematical models have been developed to describe this process, including Turing/activator-inhibitor type reaction-diffusion systems and chemotaxis/mechanical-based models based on cell movement and tissue interactions. In this paper we formulate a mathematical model founded on experimental findings, a set of interactions between the key cellular (dermal and epidermal cell populations) and molecular (fibroblast growth factor, FGF, and bone morphogenetic protein, BMP) players and a medially progressing priming wave that acts as the trigger to initiate patterning. Linear stability analysis is used to show that FGF-mediated chemotaxis of dermal cells is the crucial driver of pattern formation, while perturbations in the form of ubiquitous high BMP expression suppress patterning, consistent with experiments. Numerical simulations demonstrate the capacity of the model to pattern the skin in a spatial-temporal manner analogous to avian feather development. Further, experimental perturbations in the form of bead-displacement experiments are recapitulated and predictions are proposed in the form of blocking mesenchymal cell proliferation.


Assuntos
Aves/metabolismo , Padronização Corporal/genética , Quimiotaxia/genética , Plumas/metabolismo , Algoritmos , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Aves/embriologia , Simulação por Computador , Plumas/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Modelos Genéticos , Ligação Proteica
13.
J Math Biol ; 76(1-2): 429-456, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28597056

RESUMO

Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.


Assuntos
Adesão Celular/fisiologia , Quimiotaxia/fisiologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Moléculas de Adesão Celular/fisiologia , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Biologia Computacional , Simulação por Computador , Humanos , Conceitos Matemáticos , Processos Estocásticos
14.
J Theor Biol ; 427: 77-89, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596112

RESUMO

Many biological environments display an almost radially-symmetric structure, allowing proteins, cells or animals to move in an oriented fashion. Motivated by specific examples of cell movement in tissues, pigment protein movement in pigment cells and animal movement near watering holes, we consider a class of radially-symmetric anisotropic diffusion problems, which we call the star problem. The corresponding diffusion tensor D(x) is radially symmetric with isotropic diffusion at the origin. We show that the anisotropic geometry of the environment can lead to strong aggregations and blow-up at the origin. We classify the nature of aggregation and blow-up solutions and provide corresponding numerical simulations. A surprising element of this strong aggregation mechanism is that it is entirely based on geometry and does not derive from chemotaxis, adhesion or other well known aggregating mechanisms. We use these aggregate solutions to discuss the process of pigmentation changes in animals, cancer invasion in an oriented fibrous habitat (such as collagen fibres), and sheep distributions around watering holes.


Assuntos
Modelos Biológicos , Animais , Humanos , Melanossomas/metabolismo
15.
Bull Math Biol ; 78(9): 1904-1941, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27670430

RESUMO

Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis), very few have been proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a markedly different process from angiogenesis, occurring at different times and in response to different chemical stimuli. Two main hypotheses have been proposed: (1) lymphatic capillaries sprout from existing interrupted ones at the edge of the wound in analogy to the blood angiogenesis case and (2) lymphatic endothelial cells first pool in the wound region following the lymph flow and then, once sufficiently populated, start to form a network. Here, we present two PDE models describing lymphangiogenesis according to these two different hypotheses. Further, we include the effect of advection due to interstitial flow and lymph flow coming from open capillaries. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from biological data. The models are then solved numerically and the results are compared with the available biological literature.


Assuntos
Linfangiogênese/fisiologia , Cicatrização/fisiologia , Animais , Simulação por Computador , Humanos , Linfa/fisiologia , Vasos Linfáticos/fisiologia , Conceitos Matemáticos , Modelos Biológicos , Fator de Crescimento Transformador beta/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
16.
J Theor Biol ; 383: 61-86, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26254217

RESUMO

Several studies suggest that one possible cause of impaired wound healing is failed or insufficient lymphangiogenesis, that is the formation of new lymphatic capillaries. Although many mathematical models have been developed to describe the formation of blood capillaries (angiogenesis) very few have been proposed for the regeneration of the lymphatic network. Moreover, lymphangiogenesis is markedly distinct from angiogenesis, occurring at different times and in a different manner. Here a model of five ordinary differential equations is presented to describe the formation of lymphatic capillaries following a skin wound. The variables represent different cell densities and growth factor concentrations, and where possible the parameters are estimated from experimental and clinical data. The system is then solved numerically and the results are compared with the available biological literature. Finally, a parameter sensitivity analysis of the model is taken as a starting point for suggesting new therapeutic approaches targeting the enhancement of lymphangiogenesis in diabetic wounds. The work provides a deeper understanding of the phenomenon in question, clarifying the main factors involved. In particular, the balance between TGF-ß and VEGF levels, rather than their absolute values, is identified as crucial to effective lymphangiogenesis. In addition, the results indicate lowering the macrophage-mediated activation of TGF-ß and increasing the basal lymphatic endothelial cell growth rate, inter alia, as potential treatments. It is hoped the findings of this paper may be considered in the development of future experiments investigating novel lymphangiogenic therapies.


Assuntos
Diabetes Mellitus/fisiopatologia , Linfangiogênese/fisiologia , Modelos Biológicos , Cicatrização/fisiologia , Diabetes Mellitus/metabolismo , Humanos , Vasos Linfáticos , Macrófagos/fisiologia , Pele/lesões , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
PLoS Biol ; 9(3): e1001028, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21423653

RESUMO

Vertebrate skin is characterized by its patterned array of appendages, whether feathers, hairs, or scales. In avian skin the distribution of feathers occurs on two distinct spatial levels. Grouping of feathers within discrete tracts, with bare skin lying between the tracts, is termed the macropattern, while the smaller scale periodic spacing between individual feathers is referred to as the micropattern. The degree of integration between the patterning mechanisms that operate on these two scales during development and the mechanisms underlying the remarkable evolvability of skin macropatterns are unknown. A striking example of macropattern variation is the convergent loss of neck feathering in multiple species, a trait associated with heat tolerance in both wild and domestic birds. In chicken, a mutation called Naked neck is characterized by a reduction of body feathering and completely bare neck. Here we perform genetic fine mapping of the causative region and identify a large insertion associated with the Naked neck trait. A strong candidate gene in the critical interval, BMP12/GDF7, displays markedly elevated expression in Naked neck embryonic skin due to a cis-regulatory effect of the causative mutation. BMP family members inhibit embryonic feather formation by acting in a reaction-diffusion mechanism, and we find that selective production of retinoic acid by neck skin potentiates BMP signaling, making neck skin more sensitive than body skin to suppression of feather development. This selective production of retinoic acid by neck skin constitutes a cryptic pattern as its effects on feathering are not revealed until gross BMP levels are altered. This developmental modularity of neck and body skin allows simple quantitative changes in BMP levels to produce a sparsely feathered or bare neck while maintaining robust feather patterning on the body.


Assuntos
Padronização Corporal , Galinhas , Plumas/embriologia , Pele/anatomia & histologia , Pele/embriologia , Animais , Sequência de Bases , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Embrião de Galinha , Galinhas/genética , Análise Mutacional de DNA , Plumas/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise em Microsséries , Dados de Sequência Molecular , Fenótipo , Transdução de Sinais , Pele/metabolismo , Tretinoína/metabolismo
18.
Bull Math Biol ; 76(2): 377-400, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24347253

RESUMO

Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations.


Assuntos
Fenômenos Fisiológicos Bacterianos , Quimiotaxia/fisiologia , Modelos Biológicos , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Conceitos Matemáticos , Transdução de Sinais
19.
Mov Ecol ; 12(1): 17, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374001

RESUMO

Many baleen whales are renowned for their acoustic communication. Under pristine conditions, this communication can plausibly occur across hundreds of kilometres. Frequent vocalisations may allow a dispersed migrating group to maintain contact, and therefore benefit from improved navigation via the "wisdom of the crowd". Human activities have considerably inflated ocean noise levels. Here we develop a data-driven mathematical model to investigate how ambient noise levels may inhibit whale migration. Mathematical models allow us to simultaneously simulate collective whale migration behaviour, auditory cue detection, and noise propagation. Rising ambient noise levels are hypothesised to influence navigation through three mechanisms: (i) diminished communication space; (ii) reduced ability to hear external sound cues and; (iii) triggering noise avoidance behaviour. Comparing pristine and current soundscapes, we observe navigation impairment that ranges from mild (increased journey time) to extreme (failed navigation). Notably, the three mechanisms induce qualitatively different impacts on migration behaviour. We demonstrate the model's potential predictive power, exploring the extent to which migration may be altered under future shipping and construction scenarios.

20.
Math Biosci ; 374: 109240, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906525

RESUMO

A fundamental feature of collective cell migration is phenotypic heterogeneity which, for example, influences tumour progression and relapse. While current mathematical models often consider discrete phenotypic structuring of the cell population, in-line with the 'go-or-grow' hypothesis (Hatzikirou et al., 2012; Stepien et al., 2018), they regularly overlook the role that the environment may play in determining the cells' phenotype during migration. Comparing a previously studied volume-filling model for a homogeneous population of generalist cells that can proliferate, move and degrade extracellular matrix (ECM) (Crossley et al., 2023) to a novel model for a heterogeneous population comprising two distinct sub-populations of specialist cells that can either move and degrade ECM or proliferate, this study explores how different hypothetical phenotypic switching mechanisms affect the speed and structure of the invading cell populations. Through a continuum model derived from its individual-based counterpart, insights into the influence of the ECM and the impact of phenotypic switching on migrating cell populations emerge. Notably, specialist cell populations that cannot switch phenotype show reduced invasiveness compared to generalist cell populations, while implementing different forms of switching significantly alters the structure of migrating cell fronts. This key result suggests that the structure of an invading cell population could be used to infer the underlying mechanisms governing phenotypic switching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA