Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 34(11): 4090-8, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24623787

RESUMO

TrkA is a tyrosine kinase receptor required for development and survival of the peripheral nervous system. In the adult, TrkA and its ligand NGF are peripheral pain mediators, particularly in inflammatory pain states. However, how TrkA regulates the function of nociceptive neurons and whether its activity levels may lead to sensory abnormalities is still unclear. Here we report the characterization of a 3 aa (KFG) domain that negatively regulates TrkA level and function in response to NGF. Deletion of this domain in mouse causes a reduction of TrkA ubiquitination leading to an increase in TrkA protein levels and activity. The number of dorsal root ganglia neurons is not affected by the mutation. However, mutant mice have enhanced thermal sensitivity and inflammatory pain. Together, these data suggest that ubiquitination is a mechanism used in nociceptive neurons to regulate TrkA level and function. Our results may enhance our understanding of how ubiquitination affects TrkA activation following noxious thermal stimulation and inflammatory pain.


Assuntos
Fator de Crescimento Neural/metabolismo , Nociceptores/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Ubiquitinação/fisiologia , Animais , Linhagem Celular , Regulação para Baixo/fisiologia , Células-Tronco Embrionárias/citologia , Feminino , Gânglios Espinais/citologia , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fator de Crescimento Neural/farmacologia , Estrutura Terciária de Proteína , Receptor trkA/química , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
2.
J Neurosci ; 32(7): 2252-62, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396401

RESUMO

The molecular mechanisms underlying the effects of electroconvulsive shock (ECS) therapy, a fast-acting and very effective antidepressant therapy, are poorly understood. Changes related to neuroplasticity, including enhanced adult hippocampal neurogenesis and neuronal arborization, are believed to play an important role in mediating the effects of ECS. Here we show a dynamic upregulation of the scaffold protein tamalin, selectively in the hippocampus of animals subjected to ECS. Interestingly, this gene upregulation is functionally significant because tamalin deletion in mice abrogated ECS-induced neurogenesis in the adult mouse hippocampus. Furthermore, loss of tamalin blunts mossy fiber sprouting and dendritic arborization caused by ECS. These data suggest an essential role for tamalin in ECS-induced adult neuroplasticity and provide new insight into the pathways that are involved in mediating ECS effects.


Assuntos
Proteínas de Transporte/fisiologia , Eletrochoque , Hipocampo/crescimento & desenvolvimento , Proteínas de Membrana/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Eletrochoque/métodos , Células-Tronco Embrionárias/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Neurogênese/fisiologia , Distribuição Aleatória
3.
Nat Genet ; 30(4): 446-9, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11912493

RESUMO

In a wide variety of animal species, oocyte maturation is arrested temporarily at prophase of meiosis I (ref. 1). Resumption of meiosis requires activation of cyclin-dependent kinase-1 (CDK1, p34cdc2), one component of maturation-promoting factor (MPF). The dual specificity phosphatases Cdc25a, Cdc25b and Cdc25c are activators of cyclin-dependent kinases; consequently, they are postulated to regulate cell-cycle progression in meiosis and mitosis as well as the DNA-damage response. We generated Cdc25b-deficient (Cdc25b-/-) mice and found that they are viable. As compared with wildtype cells, fibroblasts from Cdc25b-/- mice grew vigorously in culture and arrested normally in response to DNA damage. Female Cdc25b-/- mice were sterile, and Cdc25b-/- oocytes remained arrested at prophase with low MPF activity. Microinjection of wildtype Cdc25b mRNA into Cdc25b-/- oocytes caused activation of MPF and resumption of meiosis. Thus, Cdc25b-/- female mice are sterile because of permanent meiotic arrest resulting from the inability to activate MPF. Cdc25b is therefore essential for meiotic resumption in female mice. Mice lacking Cdc25b provide the first genetic model for studying the mechanisms regulating prophase arrest in vertebrates.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Meiose , Oócitos/fisiologia , Fosfatases cdc25/genética , Fosfatases cdc25/fisiologia , Animais , Southern Blotting , Western Blotting , Células Cultivadas , Dano ao DNA , Feminino , Sistema de Sinalização das MAP Quinases , Masculino , Mesotelina , Camundongos , Microscopia de Fluorescência , Mitose , Modelos Genéticos , Oócitos/metabolismo , RNA Mensageiro/metabolismo
4.
Transl Psychiatry ; 12(1): 111, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301275

RESUMO

Recent studies have suggested that the use of cognitive enhancers as adjuncts to exposure-based therapy in individuals suffering from post-traumatic stress disorder (PTSD) may be beneficial. Brain cholinergic signaling through basal forebrain projections to the hippocampus is an established pathway mediating fear response and cognitive flexibility. Here we employed a genetic strategy to enhance cholinergic activity through increased signaling of the NGF receptor TrkA. This strategy leads to increased levels of the marker of cholinergic activation, acetylcholine synthesizing enzyme choline acetyltransferase, in forebrain cholinergic regions and their projection areas such as the hippocampus. Mice with increased cholinergic activity do not display any neurobehavioral abnormalities except a selective attenuation of fear response and lower fear expression in extinction trials. Reduction in fear response is rescued by the GABA antagonist picrotoxin in mutant mice, and, in wild-type mice, is mimicked by the GABA agonist midazolam suggesting that GABA can modulate cholinergic functions on fear circuitries. Importantly, mutant mice also show a reduction in fear processing under stress conditions in a single prolonged stress (SPS) model of PTSD-like behavior, and augmentation of cholinergic signaling by the drug donepezil in wild-type mice promotes extinction learning in a similar SPS model of PTSD-like behavior. Donepezil is already in clinical use for the treatment of dementia suggesting a new translational application of this drug for improving exposure-based psychotherapy in PTSD patients.


Assuntos
Prosencéfalo Basal , Transtornos de Estresse Pós-Traumáticos , Animais , Prosencéfalo Basal/metabolismo , Colinérgicos/uso terapêutico , Extinção Psicológica/fisiologia , Medo/fisiologia , Humanos , Camundongos , Transtornos de Estresse Pós-Traumáticos/psicologia
5.
J Cell Biol ; 173(2): 291-9, 2006 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-16636148

RESUMO

Neurotrophins play an essential role in mammalian development. Most of their functions have been attributed to activation of the kinase-active Trk receptors and the p75 neurotrophin receptor. Truncated Trk receptor isoforms lacking the kinase domain are abundantly expressed during development and in the adult; however, their function and signaling capacity is largely unknown. We show that the neurotrophin-3 (NT3) TrkCT1-truncated receptor binds to the scaffold protein tamalin in a ligand-dependent manner. Moreover, NT3 initiation of this complex leads to activation of the Rac1 GTPase through adenosine diphosphate-ribosylation factor 6 (Arf6). At the cellular level, NT3 binding to TrkCT1-tamalin induces Arf6 translocation to the membrane, which in turn causes membrane ruffling and the formation of cellular protrusions. Thus, our data identify a new signaling pathway elicited by the kinase-deficient TrkCT1 receptor. Moreover, we establish NT3 as an upstream regulator of Arf6.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Receptor trkC/fisiologia , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo , Fator 6 de Ribosilação do ADP , Linhagem Celular , Células Cultivadas , Humanos , Modelos Biológicos , Isoformas de Proteínas/fisiologia
6.
Mol Cell Biol ; 26(14): 5249-58, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16809763

RESUMO

Trafficking and cell adhesion are key properties of cells of the immune system. However, the molecular pathways that control these cellular behaviors are still poorly understood. Cybr is a scaffold protein highly expressed in the hematopoietic/immune system whose physiological role is still unknown. In vitro studies have shown it regulates LFA-1, a crucial molecule in lymphocyte attachment and migration. Cybr also binds cytohesin-1, a guanine nucleotide exchange factor for the ARF GTPases, which affects actin cytoskeleton remodeling during cell migration. Here we show that expression of Cybr in vivo is differentially modulated by type 1 cytokines during lymphocyte maturation. In mice, Cybr deficiency negatively affects leukocytes circulating in blood and lymphocytes present in the lymph nodes. Moreover, in a Th1-polarized mouse model, lymphocyte trafficking is impaired by loss of Cybr, and Cybr-deficient mice with aseptic peritonitis have fewer cells than controls present in the peritoneal cavity, as well as fewer leukocytes leaving the bloodstream. Mutant mice injected with Moloney murine sarcoma/leukemia virus develop significantly larger tumors than wild-type mice and have reduced lymph node enlargement, suggesting reduced cytotoxic T-lymphocyte migration. Taken together, these data support a role for Cybr in leukocyte trafficking, especially in response to proinflammatory cytokines in stress conditions.


Assuntos
Citocinas/fisiologia , Proteínas do Citoesqueleto/fisiologia , Leucócitos/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Expressão Gênica , Leucócitos/citologia , Leucócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus do Sarcoma Murino de Moloney , Peritonite/imunologia , Peritonite/patologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/patologia , Sarcoma Experimental/imunologia , Sarcoma Experimental/patologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/fisiologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia
7.
Methods Mol Biol ; 530: 141-64, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19266325

RESUMO

The scientific value of a mouse model with a targeted mutation depends greatly upon how carefully the mutation has been engineered. Until recently, our ability to alter the mouse genome has been limited by both the lack of technologies to conditionally target a locus and by conventional cloning. The "cre/loxP" and "recombineering" technologies have overcome some of these limitations and have greatly enhanced our ability to manipulate the mouse genome in a sophisticated way. However, there are still some practical aspects that need to be considered to successfully target a specific genetic locus. Here, we describe the process to engineer a targeted mutation to generate a mouse model. We include a tutorial using the publicly available informatic tools that can be downloaded for processing the genetic information needed to generate a targeting vector.


Assuntos
Células-Tronco Embrionárias/fisiologia , Marcação de Genes/métodos , Engenharia Genética/métodos , Vetores Genéticos , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
8.
Elife ; 82019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429825

RESUMO

Brain-derived neurotrophic factor (BDNF) is a potent modulator of brain synaptic plasticity. Signaling defects caused by dysregulation of its Ntrk2 (TrkB) kinase (TrkB.FL) and truncated receptors (TrkB.T1) have been linked to the pathophysiology of several neurological and neurodegenerative disorders. We found that upregulation of Rbfox1, an RNA binding protein associated with intellectual disability, epilepsy and autism, increases selectively hippocampal TrkB.T1 isoform expression. Physiologically, increased Rbfox1 impairs BDNF-dependent LTP which can be rescued by genetically restoring TrkB.T1 levels. RNA-seq analysis of hippocampi with upregulation of Rbfox1 in conjunction with the specific increase of TrkB.T1 isoform expression also shows that the genes affected by Rbfox1 gain of function are surprisingly different from those influenced by Rbfox1 deletion. These findings not only identify TrkB as a major target of Rbfox1 pathophysiology but also suggest that gain or loss of function of Rbfox1 regulate different genetic landscapes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração , Glicoproteínas de Membrana/biossíntese , Proteínas Tirosina Quinases/biossíntese , Fatores de Processamento de RNA/biossíntese , Regulação para Cima , Animais , Perfilação da Expressão Gênica , Camundongos , Isoformas de Proteínas/biossíntese , Análise de Sequência de RNA
9.
JCI Insight ; 2(9)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28469074

RESUMO

Motor dysfunction is a prominent and disabling feature of Huntington's disease (HD), but the molecular mechanisms that dictate its onset and progression are unknown. The N-methyl-D-aspartate receptor 2A (NR2A) subunit regulates motor skill development and synaptic plasticity in medium spiny neurons (MSNs) of the striatum, cells that are most severely impacted by HD. Here, we document reduced NR2A receptor subunits on the dendritic membranes and at the synapses of MSNs in zQ175 mice that model HD. We identify that SorCS2, a vacuolar protein sorting 10 protein-domain (VPS10P-domain) receptor, interacts with VPS35, a core component of retromer, thereby regulating surface trafficking of NR2A in MSNs. In the zQ175 striatum, SorCS2 is markedly decreased in an age- and allele-dependent manner. Notably, SorCS2 selectively interacts with mutant huntingtin (mtHTT), but not WT huntingtin (wtHTT), and is mislocalized to perinuclear clusters in striatal neurons of human HD patients and zQ175 mice. Genetic deficiency of SorCS2 accelerates the onset and exacerbates the motor coordination deficit of zQ175 mice. Together, our results identify SorCS2 as an interacting protein of mtHTT and demonstrate that impaired SorCS2-mediated NR2A subunit trafficking to dendritic surface of MSNs is, to our knowledge, a novel mechanism contributing to motor coordination deficits of HD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA