Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 50(9): 2225-2232, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28832106

RESUMO

Metalloproteins are essential to numerous reactions in nature, and constitute approximately one-third of all known proteins. Molecular dynamics of proteins has been elucidated with great success both by experimental and theoretical methods, revealing atomic level details of function involving the organic constituents on a broad spectrum of time scales. However, the characterization of dynamics at biomolecular metal sites on nanosecond time scales is scarce in the literature. The aqua ions of many biologically relevant metal ions exhibit exchange of water molecules on the nanosecond time scale or faster, often defining their reactivity in aqueous solution, and this is presumably also a relevant time scale for the making and breaking of coordination bonds between metal ions and ligands at protein metal sites. Ligand exchange dynamics is critical for a variety of elementary steps of reactions in metallobiochemistry, for example, association and dissociation of metal bound water, association of substrate and dissociation of product in the catalytic cycle of metalloenzymes, at regulatory metal sites which require binding and dissociation of metal ions, as well as in the transport of metal ions across cell membranes or between proteins involved in metal ion homeostasis. In Perturbed Angular Correlation of γ-rays (PAC) spectroscopy, the correlation in time and space of two γ-rays emitted successively in a nuclear decay is recorded, reflecting the hyperfine interactions of the PAC probe nucleus with the surroundings. This allows for characterization of molecular and electronic structure as well as nanosecond dynamics at the PAC probe binding site. Herein, selected examples describing the application of PAC spectroscopy in probing the dynamics at protein metal sites are presented, including (1) exchange of Cd2+ bound water in de novo designed synthetic proteins, and the effect of remote mutations on metal site dynamics; (2) dynamics at the ß-lactamase active site, where the metal ion appears to jump between the two adjacent sites; (3) structural relaxation in small blue copper proteins upon 111Ag+ to 111Cd2+ transformation in radioactive nuclear decay; (4) metal ion transfer between two HAH1 proteins with change in coordination number; and (5) metal ion sensor proteins with two coexisting metal site structures. With this Account, we hope to make our modest contribution to the field and perhaps spur additional interest in dynamics at protein metal sites, which we consider to be severely underexplored. Relatively little is known about detailed atomic motions at metal sites, for example, how ligand exchange processes affect protein function, and how the amino acid composition of the protein may control this facet of metal site characteristics. We also aim to provide the reader with a qualitative impression of the possibilities offered by PAC spectroscopy in bioinorganic chemistry, especially when elucidating dynamics at protein metal sites, and finally present data that may serve as benchmarks on a relevant time scale for development and tests of theoretical molecular dynamics methods applied to biomolecular metal sites.


Assuntos
Raios gama , Metais/química , Proteínas/química , Análise Espectral/métodos , Sítios de Ligação
2.
Environ Sci Process Impacts ; 26(3): 622-631, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38334136

RESUMO

Strontium-90 (90Sr) is an artificial radioisotope produced by nuclear fission, with a relatively long half-life of 29 years. This radionuclide is released into the environment in the event of a nuclear incident, posing a serious risk to human and ecosystem health. There is a need to develop new efficient methods for the remediation of 90Sr, as current techniques for its removal have significant technical limitations and involve high energy and economic costs. Recently, several species of green microalgae within the class Chlorodendrophyceae have been found to form intracellular mineral inclusions of amorphous calcium carbonate (ACC), which can be highly enriched in natural (non-radiogenic) Sr. As bioremediation techniques are an attractive option to address radioactive pollution, we investigated the capacity of the unicellular alga Tetraselmis chui (class Chlorodendrophyceae) to sequester 90Sr. The 90Sr uptake capacity of T. chui cells was assessed in laboratory cultures by monitoring the time course of radioactivity in the culture medium using liquid scintillation counting (LSC). T. chui was shown to effectively sequester 90Sr, reducing the initial radioactivity of the culture medium by up to 50%. Thus, this study demonstrates the potential of the microalga T. chui to be used as a bioremediation agent against 90Sr pollution.


Assuntos
Clorófitas , Microalgas , Humanos , Ecossistema , Radioisótopos de Estrôncio , Minerais , Radioisótopos
3.
Dalton Trans ; 47(41): 14431-14435, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30280170

RESUMO

NMR spectra of Mg2+ ions in ionic liquids were recorded using a highly sensitive variant of NMR spectroscopy known as ß-NMR. The ß-NMR spectra of MgCl2 in EMIM-Ac and EMIM-DCA compare favourably with conventional NMR, and exhibit linewidths of ∼3 ppm, allowing for discrimination of species with oxygen and nitrogen coordination.

4.
Health Phys ; 107(1): 36-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24849902

RESUMO

Measurement uncertainty is an important quality index in gamma spectrometry related to the level of bias and precision involved in the measuring procedure. Quality control measurements during the commissioning of a 16-input whole body counter showed substantial deviations between the experimentally determined precision and the theoretical estimation, indicating either equipment malfunction or lack of reproducibility of the experimental setup. In this study, the role of the magnitude and variability of airborne background radiation present in the counting room and the human body in the deterioration of the precision of counters employing NaI(Tl) detectors was investigated. Correction methods and actions based on case-specific background features were developed and applied. The experimental observations were benchmarked using a mathematical model of the counter. The efficacy of the developed methods was tested by measurements, and updated precision values were obtained. Quasi-equilibrium between the gamma-emitters Bi and Pb in the counting room and the human body is a prerequisite for accurate direct low-level radioactivity measurements in the human body.


Assuntos
Radônio/análise , Contagem Corporal Total , Adulto , Idoso , Radiação de Fundo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Potássio/análise , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA