Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Infect Immun ; : e0007224, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899880

RESUMO

Invasive fungal infections impose an enormous clinical, social, and economic burden on humankind. One of the most common species responsible for invasive fungal infections is Candida albicans. More than 30% of patients with disseminated candidiasis fail therapy with existing antifungal drugs, including the widely used azole class. We previously identified a collection of 13 medications that antagonize the activity of the azoles on C. albicans. Although gain-of-function mutations responsible for antifungal resistance are often associated with reduced fitness and virulence, it is currently unknown how exposure to azole antagonistic drugs impacts C. albicans physiology, fitness, or virulence. In this study, we examined how exposure to seven azole antagonists affects C. albicans phenotype and capacity to cause disease. Most of the azole antagonists appear to have little impact on fungal growth, morphology, stress tolerance, or gene transcription. However, aripiprazole had a modest impact on C. albicans hyphal growth and increased cell wall chitin content. It also aggravated the disseminated C. albicans infections in mice. This effect was abrogated in immunosuppressed mice, indicating that it is at least in part dependent upon host immune responses. Collectively, these data provide proof of principle that unanticipated drug-fungus interactions have the potential to influence the incidence and outcomes of invasive fungal disease.

2.
Biochem Biophys Res Commun ; 705: 149740, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38458032

RESUMO

Clostridioides difficile, a gram-positive anaerobic bacterium, is one of the most frequent causes of nosocomial infections. C. difficile infection (CDI) results in almost a half a million infections and approximately 30,000 deaths in the U.S. each year. Broad-spectrum antibacterial use is a strong risk factor for development of recurring CDI. There is a critical need for narrow-spectrum antibacterials with activity limited to C. difficile. The C. difficile enoyl-acyl carrier protein (ACP) reductase II enzyme (CdFabK), an essential and rate-limiting enzyme in the organism's fatty acid biosynthesis pathway (FAS-2), is an attractive target for narrow-spectrum CDI therapeutics as it is not present in many of the non-pathogenic gut organisms. We have previously characterized inhibitors of the CdFabK enzyme with narrow-spectrum anti-difficile activity and favorable in vivo efficacy, ADME, and low dysbiosis. To expand our knowledge of the structural requirements for CdFabK inhibition, we seek to identify new inhibitors with novel chemical scaffolds. Herein we present the optimization of a thermo-FMN biophysical assay based on the principles of differential scanning fluorimetry, or thermal shift, which leverages the fluorescence signal of the FabK enzyme's FMN prosthetic group. The optimized assay was validated by pilot testing a 10K diversity-based chemical library and novel scaffold hit compounds were identified and biochemically characterized. Additionally, we show that the thermo-FMN assay can be used to determine the thermodynamic dissociation constant, Kd, of CdFabK inhibitors.


Assuntos
Clostridioides difficile , Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Clostridioides difficile/metabolismo , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Antibacterianos/farmacologia , Antibacterianos/química
3.
PLoS Pathog ; 17(9): e1009884, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506615

RESUMO

Vulvovaginal candidiasis (VVC), caused primarily by the human fungal pathogen Candida albicans, results in significant quality-of-life issues for women worldwide. Candidalysin, a toxin derived from a polypeptide (Ece1p) encoded by the ECE1 gene, plays a crucial role in driving immunopathology at the vaginal mucosa. This study aimed to determine if expression and/or processing of Ece1p differs across C. albicans isolates and whether this partly underlies differential pathogenicity observed clinically. Using a targeted sequencing approach, we determined that isolate 529L harbors a similarly expressed, yet distinct Ece1p isoform variant that encodes for a predicted functional candidalysin; this isoform was conserved amongst a collection of clinical isolates. Expression of the ECE1 open reading frame (ORF) from 529L in an SC5314-derived ece1Δ/Δ strain resulted in significantly reduced vaginopathogenicity as compared to an isogenic control expressing a wild-type (WT) ECE1 allele. However, in vitro challenge of vaginal epithelial cells with synthetic candidalysin demonstrated similar toxigenic activity amongst SC5314 and 529L isoforms. Creation of an isogenic panel of chimeric strains harboring swapped Ece1p peptides or HiBiT tags revealed reduced secretion with the ORF from 529L that was associated with reduced virulence. A genetic survey of 78 clinical isolates demonstrated a conserved pattern between Ece1p P2 and P3 sequences, suggesting that substrate specificity around Kex2p-mediated KR cleavage sites involved in protein processing may contribute to differential pathogenicity amongst clinical isolates. Therefore, we present a new mechanism for attenuation of C. albicans virulence at the ECE1 locus.


Assuntos
Candida albicans/genética , Candidíase Vulvovaginal/microbiologia , Proteínas Fúngicas/genética , Alelos , Animais , Candida albicans/patogenicidade , Feminino , Variação Genética , Humanos , Camundongos , Virulência
4.
Antimicrob Agents Chemother ; 65(12): e0104421, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34516249

RESUMO

The azole antifungals inhibit sterol 14α-demethylase (S14DM), leading to depletion of cellular ergosterol and the synthesis of an aberrant sterol diol that disrupts membrane function. In Candida albicans, sterol diol production is catalyzed by the C-5 sterol desaturase enzyme encoded by ERG3. Accordingly, mutations that inactivate ERG3 enable the fungus to grow in the presence of the azoles. The purpose of this study was to compare the propensities of C-5 sterol desaturases from different fungal pathogens to produce the toxic diol upon S14DM inhibition and thus contribute to antifungal efficacy. The coding sequences of ERG3 homologs from C. albicans (CaERG3), Candida glabrata (CgERG3), Candida auris (CaurERG3), Cryptococcus neoformans (CnERG3), Aspergillus fumigatus (AfERG3A-C) and Rhizopus delemar (RdERG3A/B) were expressed in a C. albicans erg3Δ/Δ mutant to facilitate comparative analysis. All but one of the Erg3p-like proteins (AfErg3C) at least partially restored C-5 sterol desaturase activity and to corresponding degrees rescued the stress and hyphal growth defects of the C. albicans erg3Δ/Δ mutant, confirming functional equivalence. Each C-5 desaturase enzyme conferred markedly different responses to fluconazole exposure in terms of the MIC and residual growth observed at supra-MICs. Upon fluconazole-mediated inhibition of S14DM, the strains expressing each homolog also produced various levels of 14α-methylergosta-8,24(28)-dien-3ß,6α-diol. The RdErg3A and AfErg3A proteins are notable for low levels of sterol diol production and failing to confer appreciable azole sensitivity upon the C. albicans erg3Δ/Δ mutant. These findings suggest that species-specific properties of C-5 sterol desaturase may be an important determinant of intrinsic azole sensitivity.


Assuntos
Antifúngicos , Farmacorresistência Fúngica , Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/genética , Candida auris , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Oxirredutases , Esterol 14-Desmetilase/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-30323044

RESUMO

Increased expression of drug efflux pumps and changes in the target enzyme Erg11p are known to contribute to azole resistance in Candida albicans, one of the most prevalent fungal pathogens. Mutations that inactivate ERG3, which encodes sterol Δ5,6-desaturase, also confer in vitro azole resistance. However, it is unclear whether the loss of Erg3p activity is sufficient to confer resistance within the mammalian host, and relatively few erg3 mutants have been reported among azole-resistant clinical isolates. Trailing growth (residual growth in the presence of the azoles) is a phenotype observed with many C. albicans isolates and, in its extreme form, can be mistaken for resistance. The purpose of this study was to determine whether the growth of Erg3p-deficient C. albicans mutants in the presence of the azoles possesses the characteristics of azole resistance or of an exaggerated form of trailing growth. Our results demonstrate that, similar to trailing isolates, the capacity of an erg3Δ/Δ mutant to endure the consequences of azole exposure is at least partly dependent on both temperature and pH. This contrasts with true azole resistance that results from enhanced drug efflux and/or changes in the target enzyme. The erg3Δ/Δ mutant and trailing isolates also appear to sustain significant membrane damage upon azole treatment, further distinguishing them from resistant isolates. However, the insensitivity of the erg3Δ/Δ mutant to azoles is unaffected by the calcineurin inhibitor cyclosporin A, distinguishing it from trailing isolates. In conclusion, the erg3 mutant phenotype is qualitatively and quantitatively distinct from both azole resistance and trailing growth.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Farmacorresistência Fúngica/genética , Oxirredutases/genética , Inibidores de Calcineurina/farmacologia , Candida albicans/isolamento & purificação , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Ciclosporina/farmacologia , Fluconazol/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Oxirredutases/deficiência
6.
Artigo em Inglês | MEDLINE | ID: mdl-30718246

RESUMO

Candida auris has rapidly emerged as a health care-associated and multidrug-resistant pathogen of global concern. In this work, we examined the relative expression of the four C. auris genes with the highest degree of homology to Candida albicansCDR1 and MDR1 among three triazole-resistant clinical isolates as compared to the triazole-susceptible genome reference clinical isolate. We subsequently utilized a novel Cas9-mediated system for genetic manipulations to delete C. aurisCDR1 and MDR1 in both a triazole-resistant clinical isolate and a susceptible reference strain and observed that MICs for all clinically available triazoles decreased as much as 128-fold in the CDR1 deletion strains. The findings of this work reveal for the first time that C. aurisCDR1 and MDR1 are more highly expressed among triazole-resistant clinical isolates of C. auris and that the overexpression of CDR1 is a significant contributor to clinical triazole resistance.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Proteína 9 Associada à CRISPR/genética , Candida/isolamento & purificação , Candidíase/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Microrganismos Geneticamente Modificados , Triazóis/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-30858206

RESUMO

The increasing incidence of and high mortality rates associated with invasive fungal infections (IFIs) impose an enormous clinical, social, and economic burden on humankind. In addition to microbiological resistance to existing antifungal drugs, the large number of unexplained treatment failures is a serious concern. Due to the extremely limited therapeutic options available, it is critical to identify and understand the various causes of treatment failure if patient outcomes are to improve. In this study, we examined one potential source of treatment failure: antagonistic drug interactions. Using a simple screen, we systematically identified currently approved medications that undermine the antifungal activity of three major antifungal drugs-fluconazole, caspofungin, and amphotericin B-on four prevalent human fungal pathogens-Candida albicans, Candida glabrata, Candida parapsilosis, and Candida tropicalis This revealed that a diverse collection of structurally distinct drugs exhibit antagonistic interactions with fluconazole. Several antagonistic agents selected for follow-up studies induce azole resistance through a mechanism that depends on Tac1p/Pdr1p zinc-cluster transcription factors, which activate the expression of drug efflux pumps belonging to the ABC-type transporter family. Few antagonistic interactions were identified with caspofungin or amphotericin B, possibly reflecting their cell surface mode of action that should not be affected by drug efflux mechanisms. Given that patients at greatest risk of IFIs usually receive a multitude of drugs to treat various underlying conditions, these studies suggest that chemically inducible azole resistance may be much more common and important than previously realized.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Azóis/farmacologia , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Haloperidol/farmacologia , Humanos , Morfolinas/farmacologia
8.
Infect Immun ; 86(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30249743

RESUMO

The human fungal pathogen Candida albicans is the major etiological agent of vulvovaginal candidiasis (VVC). Despite this fact, other non-albicans Candida (NAC) species have frequently been reported, as well. Despite their presence in the vaginal environment, little is known about their capacities to elicit immune responses classically associated with C. albicans-mediated immunopathology, including neutrophil recruitment and proinflammatory cytokine signaling. Therefore, using a combination of in vitro and in vivo approaches, we undertook a comparative analysis to determine whether a representative panel of NAC species could colonize, induce immunopathological markers, or cause damage at the vaginal mucosa. Using a murine model of VVC, C. albicans was found to induce robust immunopathology (neutrophils and interleukin 1ß [IL-1ß]) and elicit mucosal damage. However, all the NAC species tested (including C. dubliniensis, C. tropicalis, C. parapsilosis, C. krusei, C. glabrata, and C. auris) induced significantly less damage and neutrophil recruitment than C. albicans, despite achieving similar early colonization levels. These results largely correlated with a notable lack of ability by the NAC species (including C. dubliniensis and C. tropicalis) to form hyphae both in vitro and in vivo Furthermore, both C. dubliniensis and C. tropicalis induced significantly less expression of the ECE1 gene encoding candidalysin, a key fungal virulence determinant driving VVC immunopathology. In order to determine the relative capacities of these species to elicit inflammasome-dependent IL-1ß release, both wild-type and NLRP3-/- THP-1 cells were challenged in vitro While most species tested elicited only modest amounts of IL-1ß, challenge with C. albicans led to significantly elevated levels that were largely NLRP3 dependent. Collectively, our findings demonstrate that although NAC species are increasingly reported as causative agents of VVC, C. albicans appears to be exceedingly vaginopathogenic, exhibiting robust immunopathology, hypha formation, and candidalysin expression. Thus, this study provides mechanistic insight into why C. albicans is overwhelmingly the major pathogen reported during VVC.


Assuntos
Candida/patogenicidade , Candidíase Vulvovaginal/microbiologia , Vagina/imunologia , Vagina/patologia , Animais , Candida glabrata/patogenicidade , Candida tropicalis/patogenicidade , Candidíase Vulvovaginal/imunologia , Candidíase Vulvovaginal/patologia , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Inflamassomos , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/imunologia , Mucosa/microbiologia , Mucosa/patologia , Infiltração de Neutrófilos , Transdução de Sinais/imunologia , Vagina/microbiologia , Fatores de Virulência
9.
Infect Immun ; 86(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29109176

RESUMO

Unlike other forms of candidiasis, vulvovaginal candidiasis, caused primarily by the fungal pathogen Candida albicans, is a disease of immunocompetent and otherwise healthy women. Despite its prevalence, the fungal factors responsible for initiating symptomatic infection remain poorly understood. One of the hallmarks of vaginal candidiasis is the robust recruitment of neutrophils to the site of infection, which seemingly do not clear the fungus, but rather exacerbate disease symptomatology. Candidalysin, a newly discovered peptide toxin secreted by C. albicans hyphae during invasion, drives epithelial damage, immune activation, and phagocyte attraction. Therefore, we hypothesized that Candidalysin is crucial for vulvovaginal candidiasis immunopathology. Anti-Candida immune responses are anatomical-site specific, as effective gastrointestinal, oral, and vaginal immunities are uniquely compartmentalized. Thus, we aimed to identify the immunopathologic role of Candidalysin and downstream signaling events at the vaginal mucosa. Microarray analysis of C. albicans-infected human vaginal epithelium in vitro revealed signaling pathways involved in epithelial damage responses, barrier repair, and leukocyte activation. Moreover, treatment of A431 vaginal epithelial cells with Candidalysin induced dose-dependent proinflammatory cytokine responses (including interleukin 1α [IL-1α], IL-1ß, and IL-8), damage, and activation of c-Fos and mitogen-activated protein kinase (MAPK) signaling, consistent with fungal challenge. Mice intravaginally challenged with C. albicans strains deficient in Candidalysin exhibited no differences in colonization compared to isogenic controls. However, significant decreases in neutrophil recruitment, damage, and proinflammatory cytokine expression were observed with these strains. Our findings demonstrate that Candidalysin is a key hypha-associated virulence determinant responsible for the immunopathogenesis of C. albicans vaginitis.


Assuntos
Candida albicans/patogenicidade , Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Mucosa/microbiologia , Animais , Candidíase Vulvovaginal/imunologia , Candidíase Vulvovaginal/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Proteínas Fúngicas/farmacologia , Humanos , Camundongos , Mucosa/patologia , Infiltração de Neutrófilos/imunologia , Transdução de Sinais , Vagina/imunologia , Vagina/metabolismo , Vagina/microbiologia , Fatores de Virulência
10.
Artigo em Inglês | MEDLINE | ID: mdl-29712657

RESUMO

The incidence of invasive fungal infections has risen significantly in recent decades as medical interventions have become increasingly aggressive. These infections are extremely difficult to treat due to the extremely limited repertoire of systemic antifungals, the development of drug resistance, and the extent to which the patient's immune function is compromised. Even when the appropriate antifungal therapies are administered in a timely fashion, treatment failure is common, even in the absence of in vitro microbial resistance. In this study, we screened a small collection of FDA-approved oncolytic agents for compounds that impact the efficacy of the two most widely used classes of systemic antifungals against Candida albicans, Candida glabrata, and Aspergillus fumigatus We have identified several drugs that enhance fungal growth in the presence of azole antifungals and examine the potential that these drugs directly affect fungal fitness, specifically antifungal susceptibility, and may be contributing to clinical treatment failure.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Azóis/farmacologia , Candida/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Antagonismo de Drogas , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Testes de Sensibilidade Microbiana , Pirimidinas/farmacologia , Sulfonas/farmacologia
11.
Infect Immun ; 85(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28760935

RESUMO

The secreted aspartyl proteinases of Candida albicans have long been implicated in virulence at the mucosal surface, including contributions to colonization and immunopathogenesis during vulvovaginal candidiasis. In an effort to disentangle hypha-associated virulence factor regulation from morphological transition, the purpose of this study was to determine if overexpression of SAP2 or SAP5 in an efg1Δ/Δ cph1Δ/Δ mutant could restore the capacity to cause immunopathology during murine vaginitis to this avirulent hypofilamentous strain. Two similar yet distinct genetic approaches were used to construct expression vectors to achieve SAP overexpression, and both genetic and functional assays confirmed elevated SAP activity in transformed strains. Similar to previous findings, intravaginal challenge of C57BL/6 mice with hypha-defective strains attained high levels of mucosal colonization but failed to induce robust vaginal immunopathology (neutrophil recruitment, interleukin-1ß [IL-1ß] secretion, and lactate dehydrogenase release) compared to that with the hypha-competent control. Moreover, constitutive expression of SAP2 or SAP5 in two distinct sets of such strains did not elicit immunopathological markers at levels above those observed during challenge with isogenic empty vector controls. Therefore, these results suggest that the physiological contributions of SAPs to vaginal immunopathology require hypha formation, other hypha-associated factors, or genetic interaction with EFG1 and/or CPH1 to cause symptomatic infection. Additionally, the outlined expression strategy and strain sets will be useful for decoupling other downstream morphogenetic factors from hyphal growth.

12.
Artigo em Inglês | MEDLINE | ID: mdl-28348159

RESUMO

We recently reported that a Candida albicans endosomal trafficking mutant continues to grow after treatment with the azole antifungals. Herein, we report that the vps21Δ/Δ mutant does not have a survival advantage over wild-type isolates after fluconazole treatment in a mouse model of vaginal candidiasis. Furthermore, loss of VPS21 does not synergize with established mechanisms of azole resistance, such as overexpression of efflux pumps or of Erg11p, the target enzyme of the azoles. In summary, although loss of VPS21 function enhances C. albicans survival after azole treatment in vitro, it does not seem to affect azole susceptibility in vivo.


Assuntos
Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candidíase Vulvovaginal/tratamento farmacológico , Fluconazol/uso terapêutico , Animais , Candida albicans/crescimento & desenvolvimento , Candidíase Vulvovaginal/microbiologia , Modelos Animais de Doenças , Farmacorresistência Fúngica/genética , Feminino , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Proteínas rab de Ligação ao GTP/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-28630186

RESUMO

Among emerging non-albicans Candida species, Candida parapsilosis is of particular concern as a cause of nosocomial bloodstream infections in neonatal and intensive care unit patients. While fluconazole and echinocandins are considered effective treatments for such infections, recent reports of fluconazole and echinocandin resistance in C. parapsilosis indicate a growing problem. The present study describes a novel mechanism of antifungal resistance in this organism affecting susceptibility to azole and echinocandin antifungals in a clinical isolate obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate, including upregulation of ergosterol biosynthesis pathway genes ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, and UPC2 Whole-genome sequencing revealed that the resistant isolate possessed an ERG3 mutation resulting in a G111R amino acid substitution. Sterol profiles indicated a reduction in sterol desaturase activity as a result of this mutation. Replacement of both mutant alleles in the resistant isolate with the susceptible isolate's allele restored wild-type susceptibility to all azoles and echinocandins tested. Disruption of ERG3 in the susceptible and resistant isolates resulted in a loss of sterol desaturase activity, high-level azole resistance, and an echinocandin-intermediate to -resistant phenotype. While disruption of ERG3 in C. albicans resulted in azole resistance, echinocandin MICs, while elevated, remained within the susceptible range. This work demonstrates that the G111R substitution in Erg3 is wholly responsible for the altered azole and echinocandin susceptibilities observed in this C. parapsilosis isolate and is the first report of an ERG3 mutation influencing susceptibility to the echinocandins.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/genética , Equinocandinas/farmacologia , Oxirredutases/genética , Azóis/metabolismo , Candida parapsilosis/isolamento & purificação , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Farmacorresistência Fúngica Múltipla/genética , Equinocandinas/metabolismo , Ergosterol/biossíntese , Ergosterol/genética , Fungemia/tratamento farmacológico , Fungemia/microbiologia , Fungemia/prevenção & controle , Dosagem de Genes/genética , Genoma Fúngico/genética , Humanos , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único/genética
14.
Antimicrob Agents Chemother ; 60(12): 7170-7177, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27645241

RESUMO

The azole antifungals arrest fungal growth through inhibition of ergosterol biosynthesis. We recently reported that a Candida albicans vps21Δ/Δ mutant, deficient in membrane trafficking through the late endosome/prevacuolar compartment (PVC), continues to grow in the presence of the azoles despite the depletion of cellular ergosterol. Here, we report that the vps21Δ/Δ mutant exhibits less plasma membrane damage upon azole treatment than the wild type, as measured by the release of a cytoplasmic luciferase reporter into the culture supernatant. Our results also reveal that the vps21Δ/Δ mutant has abnormal levels of intracellular Ca2+ and, in the presence of fluconazole, enhanced expression of a calcineurin-responsive RTA2-GFP reporter. Furthermore, the azole tolerance phenotype of the vps21Δ/Δ mutant is dependent upon both extracellular calcium levels and calcineurin activity. These findings underscore the importance of endosomal trafficking in determining the cellular consequences of azole treatment and indicate that this may occur through modulation of calcium- and calcineurin-dependent responses.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Cálcio/metabolismo , Candida albicans/efeitos dos fármacos , Endossomos/metabolismo , Calcineurina/metabolismo , Candida albicans/fisiologia , Membrana Celular/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Mutação
15.
Eukaryot Cell ; 14(10): 1006-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26231054

RESUMO

Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed.


Assuntos
Antifúngicos/farmacologia , Candida albicans/patogenicidade , Candidíase Invasiva/patologia , Candidíase Vulvovaginal/patologia , Morfolinas/farmacologia , Oxirredutases/genética , Esteroide Isomerases/genética , Vacúolos/fisiologia , Animais , Candida albicans/efeitos dos fármacos , Candidíase Invasiva/microbiologia , Candidíase Vulvovaginal/microbiologia , Catepsina A/metabolismo , Farmacorresistência Fúngica/genética , Ergosterol/biossíntese , Ergosterol/genética , Feminino , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Hifas/genética , Hifas/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Oxirredutases/antagonistas & inibidores , Esteroide Isomerases/antagonistas & inibidores , Vacúolos/efeitos dos fármacos
16.
Antimicrob Agents Chemother ; 59(4): 2410-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666149

RESUMO

The azole antifungals block ergosterol biosynthesis by inhibiting lanosterol demethylase (Erg11p). The resulting depletion of cellular ergosterol and the accumulation of "toxic" sterol intermediates are both thought to compromise plasma membrane function. However, the effects of ergosterol depletion upon the function of intracellular membranes and organelles are not well described. The purpose of this study was to characterize the effects of azole treatment upon the integrity of the Candida albicans vacuole and to determine whether, in turn, vacuolar trafficking influences azole susceptibility. Profound fragmentation of the C. albicans vacuole can be observed as an early consequence of azole treatment, and it precedes significant growth inhibition. In addition, a C. albicans vps21Δ/Δ mutant, blocked in membrane trafficking through the late endosomal prevacuolar compartment (PVC), is able to grow significantly more than the wild type in the presence of several azole antifungals under standard susceptibility testing conditions. Furthermore, the vps21Δ/Δ mutant is able to grow despite the depletion of cellular ergosterol. This phenotype resembles an exaggerated form of "trailing growth" that has been described for some clinical isolates. In contrast, the vps21Δ/Δ mutant is hypersensitive to drugs that block alternate steps in ergosterol biosynthesis. On the basis of these results, we propose that endosomal trafficking defects may lead to the cellular "redistribution" of the sterol intermediates that accumulate following inhibition of ergosterol biosynthesis. Furthermore, the destination of these intermediates, or the precise cellular compartments in which they accumulate, may be an important determinant of their toxicity and thus ultimately antifungal efficacy.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/farmacologia , Azóis/metabolismo , Azóis/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Endossomos/metabolismo , Farmacorresistência Fúngica , Ergosterol/metabolismo , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Vacúolos/efeitos dos fármacos
17.
Infect Immun ; 82(8): 3426-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891104

RESUMO

Intra-abdominal polymicrobial infections cause significant morbidity and mortality. An established experimental mouse model of Staphylococcus aureus-Candida albicans intra-abdominal infection results in ∼60% mortality within 48 h postinoculation, concomitant with amplified local inflammatory responses, while monomicrobial infections are avirulent. The purpose of this study was to characterize early local and systemic innate responses during coinfection and determine the role of C. albicans morphogenesis in lethality, a trait involved in virulence and physical interaction with S. aureus. Local and systemic proinflammatory cytokines were significantly elevated during coinfection at early time points (4 to 12 h) compared to those in monoinfection. In contrast, microbial burdens in the organs and peritoneal lavage fluid were similar between mono- and coinfected animals through 24 h, as was peritoneal neutrophil infiltration. After optimizing the model for 100% mortality within 48 h, using 3.5 × 10(7) C. albicans (5× increase), coinfection with C. albicans yeast-locked or hypha-locked mutants showed similar mortality, dissemination, and local and systemic inflammation to the isogenic control. However, coinfection with the yeast-locked C. albicans mutant given intravenously (i.v.) and S. aureus given intraperitoneally (i.p.) failed to induce mortality. These results suggest a unique intra-abdominal interaction between the host and C. albicans-S. aureus that results in strong inflammatory responses, dissemination, and lethal sepsis, independent of C. albicans morphogenesis.


Assuntos
Candidíase/complicações , Coinfecção/microbiologia , Hifas/crescimento & desenvolvimento , Infecções Intra-Abdominais/complicações , Interações Microbianas , Sepse/microbiologia , Infecções Estafilocócicas/complicações , Estruturas Animais/microbiologia , Animais , Carga Bacteriana , Candida albicans/fisiologia , Candidíase/microbiologia , Candidíase/mortalidade , Coinfecção/mortalidade , Contagem de Colônia Microbiana , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Infecções Intra-Abdominais/microbiologia , Infecções Intra-Abdominais/mortalidade , Camundongos , Sepse/mortalidade , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/fisiologia , Análise de Sobrevida
18.
Infect Immun ; 82(2): 532-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24478069

RESUMO

Vulvovaginal candidiasis, caused primarily by Candida albicans, presents significant health issues for women of childbearing age. As a polymorphic fungus, the ability of C. albicans to switch between yeast and hyphal morphologies is considered its central virulence attribute. Armed with new criteria for defining vaginitis immunopathology, the purpose of this study was to determine whether the yeast-to-hypha transition is required for the hallmark inflammatory responses previously characterized during murine vaginitis. Kinetic analyses of vaginal infection with C. albicans in C57BL/6 mice demonstrated that fungal burdens remained constant throughout the observation period, while polymorphonuclear leukocyte (PMN), S100A8, and interleukin-1ß levels obtained from vaginal lavage fluid increased by day 3 onward. Lactate dehydrogenase activity was also positively correlated with increased effectors of innate immunity. Additionally, immunodepletion of neutrophils in infected mice confirmed a nonprotective role for PMNs during vaginitis. Determination of the importance of fungal morphogenesis during vaginitis was addressed with a two-pronged approach. Intravaginal inoculation of mice with C. albicans strains deleted for key transcriptional regulators (bcr1Δ/Δ, efg1Δ/Δ, cph1Δ/Δ, and efg1Δ/Δ cph1Δ/Δ) controlling the yeast-to-hypha switch revealed a crucial role for morphogenetic signaling through the Efg1 and, to a lesser extent, the Bcr1 pathways in contributing to vaginitis immunopathology. Furthermore, overexpression of transcription factors NRG1 and UME6, to maintain yeast and hyphal morphologies, respectively, confirmed the importance of morphogenesis in generating innate immune responses in vivo. These results highlight the yeast-to-hypha switch and the associated morphogenetic response as important virulence components for the immunopathogenesis of Candida vaginitis, with implications for transition from benign colonization to symptomatic infection.


Assuntos
Candida albicans/citologia , Candida albicans/genética , Candidíase Vulvovaginal/microbiologia , Candidíase Vulvovaginal/patologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , L-Lactato Desidrogenase/metabolismo , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ducha Vaginal
19.
Infect Immun ; 82(2): 783-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24478092

RESUMO

Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects women worldwide. Animal and clinical studies suggest that the immunopathogenic inflammatory condition of VVC is initiated by S100 alarmins in response to C. albicans, which stimulate polymorphonuclear neutrophil (PMN) migration to the vagina. The purpose of this study was to extend previous in vitro data and determine the requirement for the alarmin S100A8 in the PMN response and to evaluate pattern recognition receptors (PRRs) that initiate the response. For the former, PMN migration was evaluated in vitro or in vivo in the presence or absence of S100 alarmins initiated by several approaches. For the latter, vaginal epithelial cells were evaluated for PRR expression and C. albicans-induced S100A8 and S100A9 mRNAs, followed by evaluation of the PMN response in inoculated PRR-deficient mice. Results revealed that, consistent with previously reported in vitro data, eukaryote-derived S100A8, but not prokaryote-derived recombinant S100A8, induced significant PMN chemotaxis in vivo. Conversely, a lack of biologically active S100A8 alarmin, achieved by antibody neutralization or by using S100A9(-/-) mice, had no effect on the PMN response in vivo. In PRR analyses, whereas Toll-like receptor 4 (TLR4)- and SIGNR1-deficient vaginal epithelial cells showed a dramatic reduction in C. albicans-induced S100A8/S100A9 mRNAs in vitro, inoculated mice deficient in these PRRs showed PMN migration similar to that in wild-type controls. These results suggest that S100A8 alarmin is sufficient, but not necessary, to induce PMN migration during VVC and that the vaginal PMN response to C. albicans involves PRRs in addition to SIGNR1 and TLR4, or other induction pathways.


Assuntos
Calgranulina A/metabolismo , Candida albicans/imunologia , Candidíase Vulvovaginal/imunologia , Movimento Celular/efeitos dos fármacos , Células Epiteliais/imunologia , Neutrófilos/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Calgranulina A/genética , Calgranulina B/genética , Calgranulina B/metabolismo , Candidíase Vulvovaginal/microbiologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos
20.
Bioorg Med Chem ; 22(2): 813-26, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24361188

RESUMO

Opportunistic fungal infections caused by the Candida spp. are the most common human fungal infections, often resulting in severe systemic infections-a significant cause of morbidity and mortality in at-risk populations. Azole antifungals remain the mainstay of antifungal treatment for candidiasis, however development of clinical resistance to azoles by Candida spp. limits the drugs' efficacy and highlights the need for discovery of novel therapeutics. Recently, it has been reported that simple hydrazone derivatives have the capability to potentiate antifungal activities in vitro. Similarly, pyrimidinetrione analogs have long been explored by medicinal chemists as potential therapeutics, with more recent focus being on the potential for pyrimidinetrione antimicrobial activity. In this work, we present the synthesis of a class of novel hydrazone-pyrimidinetrione analogs using novel synthetic procedures. In addition, structure-activity relationship studies focusing on fungal growth inhibition were also performed against two clinically significant fungal pathogens. A number of derivatives, including phenylhydrazones of 5-acylpyrimidinetrione exhibited potent growth inhibition at or below 10µM with minimal mammalian cell toxicity. In addition, in vitro studies aimed at defining the mechanism of action of the most active analogs provide preliminary evidence that these compound decrease energy production and fungal cell respiration, making this class of analogs promising novel therapies, as they target pathways not targeted by currently available antifungals.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Hidrazonas/farmacologia , Pirimidinonas/farmacologia , Animais , Antifúngicos/síntese química , Antifúngicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinonas/síntese química , Pirimidinonas/química , Relação Estrutura-Atividade , Células Vero/citologia , Células Vero/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA