Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(10): 4707-4715, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38410082

RESUMO

A robust, microporous, and photoactive aluminum-based metal-organic framework (Al-MOF, LCU-600) has been assembled by an in situ-formed [Al3O(CO2)6] trinuclear building unit and a tritopic carbazole ligand. LCU-600 shows a high water stability and permanent porosity for N2 and CO2 adsorption. Notably, the incorporation of photoresponsive carbazole moieties into LCU-600 makes it a highly efficient and recyclable photocatalyst for aerobic photo-oxidation of sulfides into sulfoxides under an air atmosphere at room temperature. Mechanism investigations unveil that photogenerated holes (h+), superoxide radical anion (O2•-), and singlet oxygen (1O2) are critical active spices for the photo-oxidation reaction performed in an air atmosphere.

2.
Inorg Chem ; 62(37): 15006-15014, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37672651

RESUMO

A mesoporous cobalt-based metal-organic framework (LCU-606) was synthesized based on a hexagonal bipyramid Co8(µ4-O)3 cluster and an N,N,N',N'-tetrakis-(4-benzoic acid)-1,4-phenylenediamine ligand (H4TBAP). LCU-606 featuring large pore diameters of 21.7 Å and exposed Lewis-acid metal sites could serve as an excellent heterogeneous catalyst for CO2 cycloaddition reaction with various epoxide substrates under mild conditions (1 atm CO2, 60 °C, and solvent free). In particular, when extending the substrates to bulkier ones, LCU-606 still shows high catalytic efficiency on account of the large pore aperture. Also, LCU-606 demonstrates high recyclability and stability in consecutive catalytic runs. Therefore, the high efficiency, recyclability, and generality on CO2 catalytic cycloaddition make LCU-606 a very promising heterogeneous catalyst for CO2 chemical fixation.

3.
Chem Commun (Camb) ; 60(16): 2188-2191, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38295378

RESUMO

A robust and porous titanium metal-organic framework (Ti-MOF; LCU-505) has been solvothermally synthesized based on an unprecedented tetranuclear Ti2(µ3-O)2Tb2(µ2-CH3COO)2(H2O)4(OOC-)8 cluster (abbreviated as [Ti2Tb2]) and tritopic 4,4',4''-s-triazine-2,4,6-triyl-tribenzoic acid ligand (H3TATB). LCU-505 shows remarkable water stability and permanent porosity for N2 and CO2 gas adsorption. Moreover, LCU-505 demonstrates n-type semiconductor behavior and good photocatalytic activity in the degradation of organic dyes.

4.
Dalton Trans ; 52(12): 3896-3906, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877532

RESUMO

A robust and porous titanium metal-organic framework (Ti-MOF; LCU-402) has been hydrothermally synthesized through combining a tetranuclear Ti2Ca2(µ3-O)2(µ2-H2O)1.3(H2O)4(O2C-)8 cluster and a tritopic 1,3,5-benzene(tris)benzoic (BTB) ligand. LCU-402 shows remarkable stability and permanent porosity for CO2, CH4, C2H2, C2H4, and C2H6 gas adsorption. Moreover, LCU-402 as a heterogeneous catalyst can smoothly convert CO2 under a simulated flue atmosphere into organic carbonate molecules by cycloaddition reactions of CO2 and epoxides, indicating that LCU-402 might be a promising catalyst candidate in practical applications. We are confident that the identification of a persistent titanium-oxo building unit would accelerate the development of new porous Ti-MOF materials.

5.
RSC Adv ; 12(52): 33501-33509, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505724

RESUMO

A family of microporous and robust Ln(iii)-based metal-organic frameworks (1-Ln, Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) have been obtained using 4,4',4''-nitrilotribenzoic acid (H3NTB) in NMP-HCl solvent. Both single-crystal and powder X-ray diffraction analyses demonstrate that 1-Ln are isostructural and possess 3D frameworks with permanent porosity for Ar and CO2 adsorption. Strikingly, the incorporation of both Lewis acidic lanthanide ions and the basic triphenylamine group into 1-Ln makes them efficient acid-base catalysts for both cycloaddition of epoxides with CO2 and one-pot cascade deacetalization-Knoevenagel reactions. The systematic catalytic studies show that 1-Tb and 1-Yb possess the best catalytic activities for both reactions, indicating the catalytic activities of these Ln-MOFs are strongly dependent on metal Lewis acid sites embedded in the frameworks.

6.
Dalton Trans ; 50(47): 17785-17791, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34821237

RESUMO

A series of microporous Ln(III)-based metal-organic frameworks (1-Ln) have been hydrothermally synthesized using 4,4',4''-nitrilotribenzoic acid (H3NTB). Single crystal X-ray diffraction analyses show that 1-Ln are isostructural and have 3D porous frameworks with remarkable stability and permanent porosity for Ar and CO2 adsorption. In addition, 1-Ln exhibit diverse photoluminescence emissions depending on the nature of lanthanide ions. More importantly, 1-Ln are further studied in the Knoevenagel reactions of benzaldehyde derivatives and malononitrile under solvent-free conditions, and it is found that 1-Tb shows the best catalytic activities (yields up to 99%), providing a unique example to differentiate the roles of Ln ions within the frameworks in catalyzing Knoevenagel reactions.

7.
Bioresour Technol ; 289: 121691, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31252318

RESUMO

Zeolites have been widely used as catalysts in the catalytic pyrolysis of biomass to produce biofuels and/or bio-based chemicals, which could lead to the replacement of fossil sources by renewable ones. However, conventional zeolites often suffer from diffusion resistance for large intermediate oxygenates. To solve this problem, a micro/mesoporous core-shell composite zeolite ZSM-5@SBA-15 was prepared and employed as a catalyst in the catalytic pyrolysis of maize straw. ZSM-5@SBA-15 was synthesized by crystallizing mesoporous silica on the external surface of ZSM-5 using the triblock copolymer Plunoric P123 as the template. The core-shell and hierarchical structures were verified using PXRD, TEM, and N2 sorption experiments. In the catalytic pyrolysis of maize straw, ZSM-5@SBA-15 significantly enhanced the yield of valuable phenols and hydrocarbons in bio-oil, compared to ZSM-5 and SBA-15. The results demonstrated the potential application of micro@mesoporous core-shell composite zeolites in the catalytic pyrolysis of biomass.


Assuntos
Hidrocarbonetos/química , Fenol/química , Dióxido de Silício/química , Zea mays/química , Zeolitas/química , Catálise , Hidrocarbonetos/metabolismo , Fenol/metabolismo , Pirólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA