Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012495

RESUMO

The beneficial effects of diet and exercise on brain function are traditionally attributed to the enhancement of autophagy, which plays a key role in neuroprotection via the degradation of potentially harmful intracellular structures. The molecular machinery of autophagy has also been suggested to influence synaptic signaling via interaction with trafficking and endocytosis of synaptic vesicles and proteins. Still, the role of autophagy in the regulation of synaptic plasticity remains elusive, especially in the mammalian brain. We explored the impact of autophagy on synaptic transmission and homeostatic and acute synaptic plasticity using transgenic mice with induced deletion of the Beclin1 protein. We observed down-regulation of glutamatergic and up-regulation of GABAergic synaptic currents and impairment of long-term plasticity in the neocortex and hippocampus of Beclin1-deficient mice. Beclin1 deficiency also significantly reduced the effects of environmental enrichment, caloric restriction and its pharmacological mimetics (metformin and resveratrol) on synaptic transmission and plasticity. Taken together, our data strongly support the importance of autophagy in the regulation of excitatory and inhibitory synaptic transmission and synaptic plasticity in the neocortex and hippocampus. Our results also strongly suggest that the positive modulatory actions of metformin and resveratrol in acute and homeostatic synaptic plasticity, and therefore their beneficial effects on brain function, occur via the modulation of autophagy.


Assuntos
Metformina , Plasticidade Neuronal , Animais , Autofagia , Proteína Beclina-1/metabolismo , Dieta , Hipocampo/metabolismo , Mamíferos/metabolismo , Metformina/farmacologia , Camundongos , Resveratrol/farmacologia , Sinapses/metabolismo , Transmissão Sináptica
2.
Neurochem Res ; 46(10): 2746-2759, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33677759

RESUMO

Enhanced mental and physical activity can have positive effects on the function of aging brain, both in the experimental animals and human patients, although cellular mechanisms underlying these effects are currently unclear. There is a growing evidence that pre-clinical stage of many neurodegenerative diseases involves changes in interactions between astrocytes and neurons. Conversely, astrocytes are strategically positioned to mediate the positive influence of physical activity and diet on neuronal function. Thus, development of therapeutic agents which could improve the astroglia-neuron communications in ageing brain is of crucial importance. Recent advances in studies of cellular mechanisms of brain longevity suggest that astrocyte-neuron communications have a vital role in the beneficial effects of caloric restriction, physical exercise and their pharmacological mimetics on synaptic homeostasis and cognitive function. In particular, our recent data indicate that noradrenaline uptake inhibitor atomoxetine can enhance astrocytic Ca2+-signaling and astroglia-driven modulation of synaptic plasticity. Similar effects were exhibited by caloric restriction-mimetics metformin and resveratrol. The emerged data also suggest that astrocytes could be involved in the modulatory action of caloric restriction and its mimetics on neuronal autophagy. Still, the efficiency of astrocyte-targeting compounds in preventing age-related cognitive decline is yet to be fully explored, in particular in the animal models of neurodegenerative diseases and autophagy impairment.


Assuntos
Envelhecimento/fisiologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Restrição Calórica , Exercício Físico/fisiologia , Envelhecimento/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Encéfalo/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Reserva Cognitiva/fisiologia , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia
3.
PLoS Biol ; 12(1): e1001747, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24409095

RESUMO

Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca(2+)-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca(2+)-waves and purinergic modulation of neuronal activity and sleep homeostasis. The mechanisms underlying release of gliotransmitters remain uncertain, and exocytosis is the most intriguing and debated pathway. We investigated release of ATP from acutely dissociated cortical astrocytes using "sniff-cell" approach and demonstrated that release is vesicular in nature and can be triggered by elevation of intracellular Ca(2+) via metabotropic and ionotropic receptors or direct UV-uncaging. The exocytosis of ATP from neocortical astrocytes occurred in the millisecond time scale contrasting with much slower nonvesicular release of gliotransmitters via Best1 and TREK-1 channels, reported recently in hippocampus. Furthermore, we discovered that elevation of cytosolic Ca(2+) in cortical astrocytes triggered the release of ATP that directly activated quantal purinergic currents in the pyramidal neurons. The glia-driven burst of purinergic currents in neurons was followed by significant attenuation of both synaptic and tonic inhibition. The Ca(2+)-entry through the neuronal P2X purinoreceptors led to phosphorylation-dependent down-regulation of GABAA receptors. The negative purinergic modulation of postsynaptic GABA receptors was accompanied by small presynaptic enhancement of GABA release. Glia-driven purinergic modulation of inhibitory transmission was not observed in neurons when astrocytes expressed dn-SNARE to impair exocytosis. The astrocyte-driven purinergic currents and glia-driven modulation of GABA receptors were significantly reduced in the P2X4 KO mice. Our data provide a key evidence to support the physiological importance of exocytosis of ATP from astrocytes in the neocortex.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Neocórtex/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Animais , Astrócitos/citologia , Bestrofinas , Cálcio/metabolismo , Comunicação Celular , Exocitose , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Neocórtex/citologia , Neurônios/citologia , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Purinérgicos P2X4/deficiência , Receptores Purinérgicos P2X4/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
4.
Neural Plast ; 2017: 9454275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28845311

RESUMO

Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Plasticidade Neuronal/fisiologia , Receptores Purinérgicos P2X/metabolismo , Sinapses/metabolismo , Animais , Transmissão Sináptica/fisiologia
5.
Biochem Soc Trans ; 42(5): 1275-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25233403

RESUMO

Maintaining brain function during aging is very important for mental and physical health. Recent studies showed a crucial importance of communication between two major types of brain cells: neurons transmitting electrical signals, and glial cells, which maintain the well-being and function of neurons. Still, the study of age-related changes in neuron-glia signalling is far from complete. We have shown previously that cortical astrocytes are capable of releasing ATP by a quantal soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) complex-dependent mechanism. Release of ATP from cortical astrocytes can be activated via various pathways, including direct UV-uncaging of intracellular Ca²âº or G-protein-coupled receptors. Importantly, release of both ATP and glutamate from neocortical astrocytes was not observed in brain slices of dominant-negative SNARE (dnSNARE) mice, expressing dnSNARE domain selectively in astrocytes. We also discovered that astrocyte-driven ATP can cause significant attenuation of synaptic inhibition in the pyramidal neurons via Ca²âº-interaction between the neuronal ATP and γ-aminobutyric acid (GABA) receptors. Furthermore, we showed that astrocyte-derived ATP can facilitate the induction of long-term potentiation of synaptic plasticity in the neocortex. Our recent data have shown that an age-related decrease in the astroglial Ca²âº signalling can cause a substantial decrease in the exocytosis of gliotransmitters, in particular ATP. Age-related impairment of ATP release from cortical astrocytes can cause a decrease in the extent of astroglial modulation of synaptic transmission in the neocortex and can therefore contribute to the age-related impairment of synaptic plasticity and cognitive decline. Combined, our results strongly support the physiological relevance of glial exocytosis for glia-neuron communications and brain function.


Assuntos
Trifosfato de Adenosina/metabolismo , Envelhecimento , Astrócitos/metabolismo , Exocitose , Ácido Glutâmico/metabolismo , Neocórtex/metabolismo , Plasticidade Neuronal , Animais , Astrócitos/citologia , Astrócitos/patologia , Sinalização do Cálcio , Comunicação Celular , Humanos , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Transmissão Sináptica
6.
Front Cell Neurosci ; 18: 1382010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812795

RESUMO

Intracellular Ca2+-signaling in astrocytes is instrumental for their brain "housekeeping" role and astroglial control of synaptic plasticity. An important source for elevating the cytosolic Ca2+ level in astrocytes is a release from endoplasmic reticulum which can be triggered via two fundamental pathways: IP3 receptors and calcium-induced calcium release (CICR) mediated by Ca2+-sensitive ryanodine receptors (RyRs). While the physiological role for glial IP3 became a focus of intensive research and debate, ryanodine receptors received much less attention. We explored the role for ryanodine receptors in the modulation of cytosolic Ca2+-signaling in the cortical and hippocampal astrocytes, astrocyte-neuron communication and astroglia modulation of synaptic plasticity. Our data show that RyR-mediated Ca2+-induced Ca2+-release from ER brings substantial contribution into signaling in the functional microdomains hippocampal and neocortical astrocytes. Furthermore, RyR-mediated CICR activated the release of ATP and glutamate from hippocampal and neocortical astrocytes which, in turn, elicited transient purinergic and tonic glutamatergic currents in the neighboring pyramidal neurons. The CICR-facilitated release of ATP and glutamate was inhibited after intracellular perfusion of astrocytes with ryanodine and BAPTA and in the transgenic dnSNARE mice with impaired astroglial exocytosis. We also found out that RyR-mediated amplification of astrocytic Ca2+-signaling enhanced the long-term synaptic potentiation in the hippocampus and neocortex of aged mice. Combined, our data demonstrate that ryanodine receptors are essential for astrocytic Ca2+-signaling and efficient astrocyte-neuron communications. The RyR-mediated CICR contributes to astrocytic control of synaptic plasticity and can underlie, at least partially, neuroprotective and cognitive effects of caffein.

7.
J Neurosci ; 32(38): 13039-51, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22993422

RESUMO

The ability of neurons to modulate synaptic strength underpins synaptic plasticity, learning and memory, and adaptation to sensory experience. Despite the importance of synaptic adaptation in directing, reinforcing, and revising the behavioral response to environmental influences, the cellular and molecular mechanisms underlying synaptic adaptation are far from clear. Brain-derived neurotrophic factor (BDNF) is a prime initiator of structural and functional synaptic adaptation. However, the signaling cascade activated by BDNF to initiate these adaptive changes has not been elucidated. We have previously shown that BDNF activates mitogen- and stress-activated kinase 1 (MSK1), which regulates gene transcription via the phosphorylation of both CREB and histone H3. Using mice with a kinase-dead knock-in mutation of MSK1, we now show that MSK1 is necessary for the upregulation of synaptic strength in response to environmental enrichment in vivo. Furthermore, neurons from MSK1 kinase-dead mice failed to show scaling of synaptic transmission in response to activity deprivation in vitro, a deficit that could be rescued by reintroduction of wild-type MSK1. We also show that MSK1 forms part of a BDNF- and MAPK-dependent signaling cascade required for homeostatic synaptic scaling, which likely resides in the ability of MSK1 to regulate cell surface GluA1 expression via the induction of Arc/Arg3.1. These results demonstrate that MSK1 is an integral part of a signaling pathway that underlies the adaptive response to synaptic and environmental experience. MSK1 may thus act as a key homeostat in the activity- and experience-dependent regulation of synaptic strength.


Assuntos
Homeostase/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sinapses/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Espinhas Dendríticas/fisiologia , Meio Ambiente , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Homeostase/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Mutação Puntual/genética , Receptores de AMPA/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/genética , Tetrodotoxina/farmacologia , Fatores de Tempo
8.
Neuropharmacology ; 229: 109477, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841527

RESUMO

ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.


Assuntos
Trifosfato de Adenosina , Receptores Purinérgicos P2 , Receptores Purinérgicos P2/fisiologia , Sinapses , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Células Receptoras Sensoriais
9.
Biochim Biophys Acta ; 1813(5): 992-1002, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20869992

RESUMO

Astroglial cells were long considered to serve merely as the structural and metabolic supporting cast and scenery against which the shining neurones perform their illustrious duties. Relatively recent evidence, however, indicates that astrocytes are intimately involved in many of the brain's functions. Astrocytes possess a diverse assortment of ionotropic transmitter receptors, which enable these glial cells to respond to many of the same signals that act on neurones. Ionotropic receptors mediate neurone-driven signals to astroglial cells in various brain areas including neocortex, hippocampus and cerebellum. Activation of ionotropic receptors trigger rapid signalling events in astroglia; these events, represented by local Ca(2+) or Na(+) signals provide the mechanism for fast neuronal-glial signalling at the synaptic level. Since astrocytes can detect chemical transmitters that are released from neurones and can release their own extracellular signals, gliotransmitters, they are intricately involved in homocellular and heterocellular signalling mechanisms in the nervous system. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.


Assuntos
Astrócitos/metabolismo , Neurônios/metabolismo , Receptores de Neurotransmissores/metabolismo , Transdução de Sinais , Animais , Fenômenos Eletrofisiológicos , Humanos , Sinapses/metabolismo
10.
FASEB J ; 25(7): 2362-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21471251

RESUMO

ERK1/2 is required for certain forms of synaptic plasticity, including the long-term potentiation of synaptic strength. However, the molecular mechanisms regulating synaptically localized ERK1/2 signaling are poorly understood. Here, we show that the MAPK scaffold protein kinase suppressor of Ras 1 (KSR1) is directly phosphorylated by the downstream kinase ERK1/2. Quantitative Western blot analysis further demonstrates that expression of mutated, feedback-deficient KSR1 promotes sustained ERK1/2 activation in HEK293 cells in response to EGF stimulation, compared to a more transient activation in control cells expressing wild-type KSR1. Immunocytochemistry and confocal imaging of primary hippocampal neurons from newborn C57BL6 mice further show that feedback phosphorylation of KSR1 significantly reduces its localization to dendritic spines. This effect can be reversed by tetrodotoxin (1 µM) or PD184352 (2 µM) treatment, further suggesting that neuronal activity and phosphorylation by ERK1/2 lead to KSR1 removal from the postsynaptic compartment. Consequently, electrophysiological recordings in hippocampal neurons expressing wild-type or feedback-deficient KSR1 demonstrate that KSR1 feedback phosphorylation restricts the potentiation of excitatory postsynaptic currents. Our findings, therefore, suggest that feedback phosphorylation of the scaffold protein KSR1 prevents excessive ERK1/2 signaling in the postsynaptic compartment and thus contributes to maintaining physiological levels of synaptic excitability.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Proteínas Quinases/metabolismo , Sinapses/fisiologia , Sequência de Aminoácidos , Animais , Benzamidas/farmacologia , Sítios de Ligação/genética , Western Blotting , Células Cultivadas , Espinhas Dendríticas/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Retroalimentação Fisiológica , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Mutação , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Quinases/genética , Homologia de Sequência de Aminoácidos
11.
Brain Sci ; 12(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552177

RESUMO

Astroglia are an active element of brain plasticity, capable to release small molecule gliotransmitters by various mechanisms and regulate synaptic strength. While importance of glia-neuron communications for long-term potentiation has been rather widely reported, research into role for astrocytes in long-depression (LTD) is just gaining momentum. Here, we explored the role for astrocytes in the prominent form of synaptic plasticity-mGluR-dependent LTD. We found out the substantial contribution of the Group I receptors, especially mGluR1 subtype, into Ca2+-signaling in hippocampal and neocortical astrocytes, which can be activated during synaptic stimulation used for LTD induction. Our data demonstrate that mGluR receptors can activate SNARE-dependent release of ATP from astrocytes which in turn can directly activate postsynaptic P2X receptors in the hippocampal and neocortical neurons. The latter mechanism has recently been shown to cause the synaptic depression via triggering the internalisation of AMPA receptors. Using mouse model of impaired glial exocytosis (dnSNARE mice), we demonstrated that mGluR-activated release of ATP from astrocytes is essential for regulation of mGluR-dependent LTD in CA3-CA1 and layer 2/3 synapses. Our data also suggest that astrocyte-related pathway relies mainly on mGluR1 receptors and act synergistically with neuronal mechanisms dependent mainly on mGluR5.

12.
Neuron ; 110(3): 423-435.e4, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34852235

RESUMO

Spatiotemporal control of brain activity by optogenetics has emerged as an essential tool to study brain function. For silencing brain activity, optogenetic probes, such as halorhodopsin and archaerhodopsin, inhibit transmitter release indirectly by hyperpolarizing membrane potentials. However, these probes cause an undesirable ionic imbalance and rebound spikes. Moreover, they are not applicable to use in non-excitable glial cells. Here we engineered Opto-vTrap, a light-inducible and reversible inhibition system to temporarily trap the transmitter-containing vesicles from exocytotic release. Light activation of Opto-vTrap caused full vesicle clusterization and complete inhibition of exocytosis within 1 min, which recovered within 30 min after light off. We found a significant reduction in synaptic and gliotransmission upon activation of Opto-vTrap in acute brain slices. Opto-vTrap significantly inhibited hippocampus-dependent memory retrieval with full recovery within an hour. We propose Opto-vTrap as a next-generation optogenetic silencer to control brain activity and behavior with minimal confounding effects.


Assuntos
Optogenética , Transmissão Sináptica , Encéfalo , Exocitose , Hipocampo , Transmissão Sináptica/fisiologia
13.
Neuropharmacology ; 199: 108758, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34433089

RESUMO

Astroglial cells were long considered as structural and metabolic supporting cells are which do not directly participate in information processing in the brain. Discoveries of responsiveness of astrocytes to synaptically-released glutamate and their capability to release agonists of glutamate receptors awakened extensive studies of glia-neuron communications and led to the revolutionary changes in our understanding of brain cellular networks. Nowadays, astrocytes are widely acknowledged as inseparable element of glutamatergic synapses and role for glutamatergic astrocyte-neuron interactions in the brain computation is emerging. Astroglial glutamate receptors, in particular of NMDA, mGluR3 and mGluR5 types, can activate a variety of molecular cascades leading astroglial-driven modulation of extracellular levels of glutamate and activity of neuronal glutamate receptors. Their preferential location to the astroglial perisynaptic processes facilitates interaction of astrocytes with individual excitatory synapses. Bi-directional glutamatergic communication between astrocytes and neurons underpins a complex, spatially-distributed modulation of synaptic signalling thus contributing to the enrichment of information processing by the neuronal networks. Still, further research is needed to bridge the substantial gaps in our understanding of mechanisms and physiological relevance of astrocyte-neuron glutamatergic interactions, in particular ability of astrocytes directly activate neuronal glutamate receptors by releasing glutamate and, arguably, d-Serine. An emerging roles for aberrant changes in glutamatergic astroglial signalling, both neuroprotective and pathogenic, in neurological and neurodegenerative diseases also require further investigation. This article is part of the special Issue on 'Glutamate Receptors - The Glutamatergic Synapse'.


Assuntos
Astrócitos/fisiologia , Neuroglia/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos
14.
Neuropharmacology ; 198: 108743, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363811

RESUMO

In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.


Assuntos
Aminoácidos Excitatórios/fisiologia , Neurotransmissores/fisiologia , Receptores de Glutamato/fisiologia , Animais , Aminoácidos Excitatórios/farmacologia , Humanos , Receptores de Glutamato/efeitos dos fármacos , Sinapses/fisiologia
15.
J Neurochem ; 113(6): 1676-84, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20374427

RESUMO

Purinergic signaling is critical for neuron-glia communication. Glial cells participate in synaptic transmission and express metabotropic P2Y as well as ionotropic P2X ATP receptors. In astrocytes, endogenous ATP-evoked currents with kinetics and pharmacology characteristic of the heteromeric P2X1/5 receptor channel have recently been reported. We investigated the interaction of major phosphoinositides with heteromeric P2X1/5 channels. Using patch-clamp electrophysiology on enhanced green fluorescent protein-expressing astrocytes acutely isolated from cortical slices of transgenic mice, we report a strong modulation of P2X1/5-like currents by phosphoinositides. Wortmannin-induced depletion of phosphoinositides decreases the amplitude of both the fast and sustained component of the P2X1/5-like currents although recovery and kinetics remain intact. In transfected human embryonic kidney cells, we provide evidence that depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] levels significantly decreases P2X1/5 currents while intracellular application of PI(4,5)P(2) completely rescued P2X1/5 currents, ruling out the involvement of phosphatidylinositol 3,4,5-trisphosphate. In contrast to P2X1, homomeric P2X5 current responses were found insensitive to phosphoinositides, and the C-terminus of P2X5 subunit lacked binding to phospholipids in an overlay assay. Our results suggest that the contribution of calcium-permeable heteromeric P2X1/5 receptor channels to the excitability of astrocytes is modulated by PI(4,5)P(2) through the P2X1 lipid-binding domain.


Assuntos
Fosfatidilinositóis/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Androstadienos/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos , Encéfalo/citologia , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Proteína Glial Fibrilar Ácida/genética , Proteínas de Fluorescência Verde/genética , Humanos , Lipídeos de Membrana/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp/métodos , Fosfatidilinositol 4,5-Difosfato/farmacologia , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X , Receptores Purinérgicos P2X5 , Transfecção/métodos , Wortmanina
16.
Brain Sci ; 10(7)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708382

RESUMO

Experience- and diet-dependent regulation of synaptic plasticity can underlie beneficial effects of active lifestyle on the aging brain. Our previous results demonstrate a key role for brain-derived neurotrophic factor (BDNF) and MSK1 kinase in experience-related homeostatic synaptic scaling. Astroglia has been recently shown to release BDNF via a calcium-dependent mechanism. To elucidate a role for astroglia-derived BDNF in homeostatic synaptic plasticity in the aging brain, we explored the experience- and diet-related alterations of synaptic transmission and plasticity in transgenic mice with impairment of the BDNF/MSK1 pathway (MSK1 kinase dead knock-in mice, MSK1 KD) and impairment of glial exocytosis (dnSNARE mice). We found that prolonged tonic activation of astrocytes caused BDNF-dependent increase in the efficacy of excitatory synapses accompanied by enlargement of synaptic boutons. We also observed that exposure to environmental enrichment (EE) and caloric restriction (CR) enhanced the Ca2+ signalling in cortical astrocytes and strongly up-regulated the excitatory and down-regulated inhibitory synaptic currents in old wild-type mice, thus counterbalancing the impact of ageing on astroglial and synaptic signalling. The EE- and CR-induced up-scaling of excitatory synaptic transmission in neocortex was accompanied by the enhancement of long-term synaptic potentiation. Importantly, effects of EE and CR on synaptic transmission and plasticity was significantly reduced in the MSK1 KD and dnSNARE mice. Combined, our results suggest that astroglial release of BDNF is important for the homeostatic regulation of cortical synapses and beneficial effects of EE and CR on synaptic transmission and plasticity in aging brain.

17.
Biochem Soc Trans ; 37(Pt 6): 1407-11, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19909286

RESUMO

The importance of communication between neuronal and glial cells for brain function is recognized by a modern concept of 'tripartite synapse'. Astrocytes enwrap synapses and can modulate their activity by releasing gliotransmitters such as ATP, glutamate and D-serine. One of the regulatory pathways in the tripartite synapse is mediated by P2X purinoreceptors. Release of ATP from synaptic terminals and astrocytes activates Ca(2+) influx via P2X purinoreceptors which co-localize with NMDA (N-methyl-D-aspartate) and GABA (gamma-aminobutyric acid) receptors and can modulate their activity via intracellular cascades which involve phosphatase II and PKA (protein kinase A).


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Astrócitos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia
18.
Front Cell Neurosci ; 13: 242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191257

RESUMO

There is growing recognition of the important role of interaction between neurons and glial cells for brain longevity. The extracellular ATP have been shown to bring significant contribution into bi-directional glia-neuron communications, in particular into astrocyte-driven modulation of synaptic plasticity. To elucidate a putative impact of brain aging on neuron-glia networks, we explored the aging-related plasticity of the purinoreceptors-mediated signaling in cortical neurons and astrocytes. We investigated the age- and experience-related alterations in purinergic components of neuronal synaptic currents and astroglial calcium signaling in the layer2/3 of neocortex of mice exposed to the mild caloric restriction (CR) and environmental enrichment (EE) which included ad libitum physical exercise. We observed the considerable age-related decline in the neuronal P2X receptor-mediated miniature spontaneous currents which originated from the release of ATP from both synapses and astrocytes. We also found out that purinergic astrocytic Ca2+-signaling underwent the substantial age-related decline but EE and CR rescued astroglial signaling, in particular mediated by P2X1, P2X1/5, and P2Y1 receptors. Our data showed that age-related attenuation in the astroglial calcium signaling caused a substantial decrease in the exocytosis of ATP leading to impairment of astroglia-derived purinergic modulation of excitatory synaptic currents and GABAergic tonic inhibitory currents. On a contrary, exposure to EE and CR, which enhanced purinergic astrocytic calcium signaling, up-regulated the excitatory and down-regulated the inhibitory currents in neurons of old mice, thus counterbalancing the impact of aging on synaptic signaling. Combined, our results strongly support the physiological importance of ATP-mediated signaling for glia-neuron interactions and brain function. Our data also show that P2 purinoreceptor-mediated communication between astrocytes and neurons in the neocortex undergoes remodeling during brain aging and decrease in the ATP release may contribute to the age-related impairment of synaptic transmission.

19.
J Neurosci ; 27(46): 12464-74, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18003824

RESUMO

In the cerebellum, the process of retrograde signaling via presynaptic receptors is important for the induction of short- and long-term changes in inhibitory synaptic transmission at interneuron-Purkinje cell (PC) synapses. Endocannabinoids, by activating presynaptic CB1 receptors, mediate a short-term decrease in inhibitory synaptic efficacy, whereas glutamate, acting on presynaptic NMDA receptors, induces a longer-latency sustained increase in GABA release. We now demonstrate that either low-frequency climbing fiber stimulation or direct somatic depolarization of Purkinje cells results in SNARE-dependent vesicular release of glutamate from the soma and dendrites of PCs. The activity-dependent release of glutamate caused the activation of postsynaptic metabotropic glutamate receptor 1 (mGluR1) on PC somatodendritic membranes, resulting in the cooperative release of endocannabinoids and an mGluR1-mediated slow membrane conductance. The activity of excitatory amino acid transporters regulated the spatial spread of glutamate and thus the extent of PC mGluR1 activation. We propose that activity-dependent somatodendritic glutamate release and autocrine activation of mGluR1 on PCs provides a powerful homeostatic mechanism to dynamically regulate inhibitory synaptic transmission in the cerebellar cortex.


Assuntos
Comunicação Autócrina/fisiologia , Dendritos/metabolismo , Ácido Glutâmico/metabolismo , Inibição Neural/fisiologia , Células de Purkinje/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Vias Aferentes/fisiologia , Animais , Animais Recém-Nascidos , Comunicação Autócrina/efeitos dos fármacos , Moduladores de Receptores de Canabinoides/metabolismo , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/fisiologia , Dendritos/efeitos dos fármacos , Estimulação Elétrica , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Inibição Neural/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Células de Purkinje/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Proteínas SNARE/metabolismo , Membranas Sinápticas/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
20.
J Gen Physiol ; 129(3): 257-65, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17325196

RESUMO

Transient currents occur at rest in cortical neurones that reflect the quantal release of transmitters such as glutamate and gamma-aminobutyric acid (GABA). We found a bimodal amplitude distribution for spontaneously occurring inward currents recorded from mouse pyramidal neurones in situ, in acutely isolated brain slices superfused with picrotoxin. Larger events were blocked by glutamate receptor (AMPA, kainate) antagonists; smaller events were partially inhibited by P2X receptor antagonists suramin and PPADS. The decay of the larger events was selectively prolonged by cyclothiazide. Stimulation of single intracortical axons elicited quantal glutamate-mediated currents and also quantal currents with amplitudes corresponding to the smaller spontaneous inward currents. It is likely that the lower amplitude spontaneous events reflect packaged ATP release. This occurs with a lower probability than that of glutamate, and evokes unitary currents about half the amplitude of those mediated through AMPA receptors. Furthermore, the packets of ATP appear to be released from vesicle in a subset of glutamate-containing terminals.


Assuntos
Trifosfato de Adenosina/metabolismo , Córtex Cerebral/metabolismo , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/metabolismo , Ácido Caínico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2 , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Receptores de Glutamato/metabolismo , Suramina/farmacologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA