RESUMO
Mouse and human data implicate the NOD1 and NOD2 sensors of the intestinal microbiome and the associated signal transduction via the receptor interacting protein kinase 2 (RIPK2) as a potential key signaling node for the development of inflammatory bowel disease (IBD) and an attractive target for pharmacological intervention. The TRUC mouse model of IBD was strongly indicated for evaluating RIPK2 antagonism for its effect on intestinal inflammation based on previous knockout studies with NOD1, NOD2, and RIPK2. We identified and profiled the BI 706039 molecule as a potent and specific functional inhibitor of both human and mouse RIPK2 and with favorable pharmacokinetic properties. We dosed BI 706039 in the spontaneous TRUC mouse model from age 28 to 56 days. Oral, daily administration of BI 706039 caused dose-responsive and significant improvement in colonic histopathological inflammation, colon weight, and terminal levels of protein-normalized fecal lipocalin (all P values <0.001). These observations correlated with dose responsively increasing systemic levels of the BI 706039 compound, splenic molecular target engagement of RIPK2, and modulation of inflammatory genes in the colon. This demonstrates that a relatively low oral dose of a potent and selective RIPK2 inhibitor can modulate signaling in the intestinal immune system and significantly improve disease associated intestinal inflammation.NEW & NOTEWORTHY The RIPK2 kinase at the apex of microbiome immunosensing is an attractive target for pharmacological intervention. A low oral dose of a RIPK2 inhibitor leads to significantly improved intestinal inflammation in the murine TRUC model of colitis. A selective and potent inhibitor of the RIPK2 kinase may represent a new class of therapeutics that target microbiome-driven signaling for the treatment of IBD.
Assuntos
Colite Ulcerativa/tratamento farmacológico , Colo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Animais , Disponibilidade Biológica , Células Cultivadas , Colite Ulcerativa/enzimologia , Colite Ulcerativa/genética , Colite Ulcerativa/patologia , Colo/enzimologia , Colo/patologia , Doença de Crohn/enzimologia , Doença de Crohn/patologia , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Fezes/química , Humanos , Mediadores da Inflamação/metabolismo , Lipocalinas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteínas com Domínio T/genéticaRESUMO
Lupus nephritis is a common disease manifestation of SLE, in which immune complex deposition and macrophage activation are important contributors to disease pathogenesis. Bruton's tyrosine kinase (BTK) plays an important role in both B cell and FcgammaR mediated myeloid cell activation. In the current study, we examined the efficacy of BI-BTK-1, a recently described irreversible BTK inhibitor, in the classical NZBâ¯×â¯NZW F1 (NZB/W) and MRL/lpr spontaneous mouse models of SLE. NZB/W mice were randomly assigned to a treatment (0.3â¯mg/kg, 1â¯mg/kg, 3â¯mg/kg and 10â¯mg/kg) or control group and began treatment at 22â¯weeks of age. The experimental setup was similar in MRL/lpr mice, but with a single treated (10â¯mg/kg, beginning at 8-9â¯weeks of age) and control group. A separate experiment was performed in the MRL/lpr strain to assess the ability of BI-BTK-1 to reverse established kidney disease. Early treatment with BI-BTK-1 significantly protected NZB/W and MRL/lpr mice from the development of proteinuria, correlating with significant renal histological protection, decreased anti-DNA titers, and increased survival in both strains. BI-BTK-1 treated mice displayed a significant decrease in nephritis-associated inflammatory mediators (e.g. LCN2 and IL-6) in the kidney, combined with a significant inhibition of immune cell infiltration and accumulation. Importantly, BI-BTK-1 treatment resulted in the reversal of established kidney disease. BTK inhibition significantly reduced total B cell numbers and all B cell subsets (immature, transitional, follicular, marginal zone, and class switched) in the spleen of NZB/W mice. Overall, the significant efficacy of BI-BTK-1 in ameliorating multiple pathological endpoints associated with kidney disease in two distinct murine models of spontaneous lupus nephritis provides a strong rationale for BTK inhibition as a promising treatment approach for lupus nephritis.
Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Rim/efeitos dos fármacos , Nefrite Lúpica/patologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Anticorpos Antinucleares/efeitos dos fármacos , Anticorpos Antinucleares/imunologia , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , DNA/imunologia , Modelos Animais de Doenças , Interleucina-6/imunologia , Interleucina-6/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/patologia , Lipocalina-2/efeitos dos fármacos , Lipocalina-2/imunologia , Lipocalina-2/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/imunologia , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos NZB , Proteinúria/imunologia , Distribuição Aleatória , Baço/citologia , Baço/efeitos dos fármacosRESUMO
BI 1002494 [(R)-4-{(R)-1-[7-(3,4,5-trimethoxy-phenyl)-[1,6]napthyridin-5-yloxy]-ethyl}pyrrolidin-2-one] is a novel, potent, and selective spleen tyrosine kinase (SYK) inhibitor with sustained plasma exposure after oral administration in rats, which qualifies this molecule as a good in vitro and in vivo tool compound. BI 1002494 exhibits higher potency in inhibiting high-affinity IgE receptor-mediated mast cell and basophil degranulation (IC50 = 115 nM) compared with B-cell receptor-mediated activation of B cells (IC50 = 810 nM). This may be explained by lower kinase potency when the physiologic ligand B-cell linker was used, suggesting that SYK inhibitors may exhibit differential potency depending on the cell type and the respective signal transduction ligand. A 3-fold decrease in potency was observed in rat basophils (IC50 = 323 nM) compared with human basophils, but a similar species potency shift was not observed in B cells. The lower potency in rat basophils was confirmed in both ex vivo inhibition of bronchoconstriction in precision-cut rat lung slices and in reversal of anaphylaxis-driven airway resistance in rats. The different cellular potencies translated into different in vivo efficacy; full efficacy in a rat ovalbumin model (that contains an element of mast cell dependence) was achieved with a trough plasma concentration of 340 nM, whereas full efficacy in a rat collagen-induced arthritis model (that contains an element of B-cell dependence) was achieved with a trough plasma concentration of 1400 nM. Taken together, these data provide a platform from which different estimates of human efficacious exposures can be made according to the relevant cell type for the indication intended to be treated.
Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos B/enzimologia , Basófilos/efeitos dos fármacos , Basófilos/enzimologia , Naftiridinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirrolidinas/farmacologia , Pirrolidinonas/farmacologia , Quinase Syk/antagonistas & inibidores , Administração Oral , Animais , Humanos , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/enzimologia , Naftiridinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Pirrolidinas/administração & dosagem , Pirrolidinonas/administração & dosagem , RatosRESUMO
Synthesis and structure-activity relationship (SAR) of a series of alkyl and cycloalkyl containing non-steroidal dissociated glucocorticoid receptor (GR) agonists is reported. This series of compounds was identified as part of an effort to replace the CF3 group in a scaffold represented by 1a. The study culminated in the identification of compound 14, a t-butyl containing derivative, which has shown potent activity for GR, selectivity against the progesterone receptor (PR) and the mineralocorticoid receptor (MR), in vitro anti-inflammatory activity in an IL-6 transrepression assay, and dissociation in a MMTV transactivation counter-screen. In a collagen-induced arthritis mouse model, 14 displayed prednisolone-like efficacy, and lower impact on body fat and free fatty acids than prednisolone at an equivalent anti-inflammatory dose.
Assuntos
Descoberta de Drogas , Glucocorticoides/síntese química , Metanol/química , Receptores de Glucocorticoides/agonistas , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Artrite/tratamento farmacológico , Sítios de Ligação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glucocorticoides/química , Glucocorticoides/farmacologia , Humanos , Concentração Inibidora 50 , Metanol/síntese química , Metanol/farmacologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Prednisolona/química , Prednisolona/farmacologia , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
We report a SAR of non-steroidal glucocorticoid mimetics that utilize indoles as A-ring mimetics. Detailed SAR is discussed with a focus on improving PR and MR selectivity, GR agonism, and in vitro dissociation profile. SAR analysis led to compound (R)-33 which showed high PR and MR selectivity, potent agonist activity, and reduced transactivation activity in the MMTV and aromatase assays. The compound is equipotent to prednisolone in the LPS-TNF model of inflammation. In mouse CIA, at 30 mg/kg compound (R)-33 inhibited disease progression with an efficacy similar to the 3 mg/kg dose of prednisolone.
Assuntos
Glucocorticoides/química , Glucocorticoides/farmacologia , Indóis/química , Indóis/farmacologia , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Relação Estrutura-AtividadeRESUMO
Applying deep learning to the field of preclinical in vivo studies is a new and exciting prospect with the potential to unlock decades worth of underutilized data. As a proof of concept, we performed a feasibility study on a colitis model treated with Sulfasalazine, a drug used in therapeutic care of inflammatory bowel disease. We aimed to evaluate the colonic mucosa improvement associated with the recovery response of the crypts, a complex histologic structure reflecting tissue homeostasis and repair in response to inflammation. Our approach requires robust image segmentation of objects of interest from whole slide images, a composite low dimensional representation of the typical or novel morphological variants of the segmented objects, and exploration of image features of significance towards biology and treatment efficacy. Both interpretable features (eg. counts, area, distance and angle) as well as statistical texture features calculated using Gray Level Co-Occurance Matrices (GLCMs), are shown to have significance in analysis. Ultimately, this analytic framework of supervised image segmentation, unsupervised learning, and feature analysis can be generally applied to preclinical data. We hope our report will inspire more efforts to utilize deep learning in preclinical in vivo studies and ultimately make the field more innovative and efficient.
Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por ComputadorRESUMO
Here, we described the design, by fragment merging and multiparameter optimization, of selective MMP-13 inhibitors that display an appropriate balance of potency and physicochemical properties to qualify as tool compounds suitable for in vivo testing. Optimization of potency was guided by structure-based insights, specifically to replace an ester moiety and introduce polar directional hydrogen bonding interactions in the core of the molecule. By introducing polar enthalpic interactions in this series of inhibitors, the overall beneficial physicochemical properties were maintained. These physicochemical properties translated to excellent drug-like properties beyond potency. In a murine model of rheumatoid arthritis, treatment of mice with selective inhibitors of MMP-13 resulted in a statistically significant reduction in the mean arthritic score vs control when dosed over a 14 day period.
RESUMO
The interleukin (IL)-23/T helper (Th)17 axis plays a critical role in autoimmune diseases, and there is an increasing number of biologic therapies that target IL-23 and IL-17. The transcription factor retinoic acid receptor-related orphan nuclear receptor γt (RORγt) is important for the activation and differentiation of Th17 cells and thus is an attractive pharmacologic target for the treatment of Th17-mediated diseases. A novel series of pyrazinone RORγ antagonists was discovered through hybridization of two distinct screening hits and scaffold hopping. The series offers attractive potency and selectivity in combination with favorable druglike properties, such as metabolic stability and aqueous solubility. Lead optimization identified a clinical candidate, compound (S)-11 (BI 730357), for the treatment of autoimmune diseases.
RESUMO
BACKGROUND: Short non-coding microRNAs (miRNAs) are involved in various cellular processes during disease progression of Crohn's disease (CD) and remarkably stable in feces, which make them attractive biomarker candidates for reflecting intestinal inflammatory processes. Here we investigated the potential of fecal miRNAs as noninvasive and translational CD biomarkers. METHODS: MiRNAs were screened in feces of 52 patients with CD and 15 healthy controls using RNA sequencing and the results were confirmed by PCR. The relationship between fecal miRNA levels and the clinical CD activity index (CDAI) or CD endoscopic index of severity (CDEIS) was explored, respectively. Additionally, fecal miRNAs were investigated in dextran sodium sulfate, adoptive T-cell transfer, and Helicobacter typhlonius/stress-induced murine colitis models using the NanoString platform. RESULTS: Nine miRNAs (miR-15a-5p, miR-16-5p, miR-128-3p, miR-142-5p, miR-24-3p, miR-27a-3p, miR-223-3p, miR-223-5p, and miR-3074-5p) were significantly (adj. P < 0.05, >3-fold) increased whereas 8 miRNAs (miR-10a-5p, miR-10b-5p, miR-141-3p, miR-192-5p, miR-200a-3p, miR-375, miR-378a-3p, and let-7g-5p) were significantly decreased in CD. MiR-192-5p, miR-375, and miR-141-3p correlated (P < 0.05) with both CDAI and CDEIS whereas miR-15a-5p correlated only with CDEIS. Deregulated expression of miR-223-3p, miR-16-5p, miR-15a-5p, miR-24-3p, and miR-200a-3p was also observed in murine models. The identified altered fecal miRNA levels reflect pathophysiological mechanisms in CD, such as Th1 and Th17 inflammation, autophagy, and fibrotic processes. CONCLUSIONS: Our translational study assessed global fecal miRNA changes of patients with CD and relevant preclinical models. These fecal miRNAs show promise as translational and clinically useful noninvasive biomarkers for mechanistic investigation of intestinal pathophysiology, including monitoring of disease progression.
RESUMO
Background and Aims: Despite the negative results of blocking IL-17 in Crohn's disease (CD) patients, selective modulation of Th17-dependent responses warrants further study. Inhibition of retinoic acid-related orphan receptor gamma (RORγt), the master regulator of the Th17 signature, is currently being explored in inflammatory diseases. Our aim was to determine the effect of a novel oral RORγt antagonist (BI119) in human CD and on an experimental model of intestinal inflammation. Methods: 51 CD patients and 11 healthy subjects were included. The effects of BI119 were tested on microbial-stimulated peripheral blood mononuclear cells (PBMCs), intestinal crypts and biopsies from CD patients. The ability of BI119 to prevent colitis in vivo was assessed in the CD4+CD45RBhigh T cell transfer model. Results: In bacterial antigen-stimulated PBMCs from CD patients, BI119 inhibits Th17-related genes and proteins, while upregulating Treg and preserving Th1 and Th2 signatures. Intestinal crypts cultured with supernatants from BI119-treated commensal-specific CD4+ T cells showed decreased expression of CXCL1, CXCL8 and CCL20. BI119 significantly reduced IL17 and IL26 transcription in colonic and ileal CD biopsies and did not affect IL22. BI119 has a more profound effect in ileal CD with additional significant downregulation of IL23R, CSF2, CXCL1, CXCL8, and S100A8, and upregulation of DEFA5. BI119 significantly prevented development of clinical, macroscopic and molecular markers of colitis in the T-cell transfer model. Conclusions: BI119 modulated CD-relevant Th17 signatures, including downregulation of IL23R while preserving mucosa-associated IL-22 responses, and abrogated experimental colitis. Our results provide support to the use of RORγt antagonists as a novel therapy to CD treatment.
Assuntos
Doença de Crohn/etiologia , Doença de Crohn/metabolismo , Interleucina-17/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Animais , Antígenos/imunologia , Biomarcadores , Biópsia , Doença de Crohn/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/patologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismoRESUMO
Inflammation is associated with immune cells infiltrating into the inflammatory site and pain. CC chemokine receptor 1 (CCR1) mediates trafficking of leukocytes to sites of inflammation. However, the contribution of CCR1 to pain is incompletely understood. Here we report an unexpected discovery that CCR1-mediated trafficking of neutrophils and CCR1 activity on non-hematopoietic cells both modulate pain. Using a genetic approach (CCR1-/- animals) and pharmacological inhibition of CCR1 with selective inhibitors, we show significant reductions in pain responses using the acetic acid-induced writhing and complete Freund's adjuvant-induced mechanical hyperalgesia models. Reductions in writhing correlated with reduced trafficking of myeloid cells into the peritoneal cavity. We show that CCR1 is highly expressed on circulating neutrophils and their depletion decreases acetic acid-induced writhing. However, administration of neutrophils into the peritoneal cavity did not enhance acetic acid-induced writhing in wild-type (WT) or CCR1-/- mice. Additionally, selective knockout of CCR1 in either the hematopoietic or non-hematopoietic compartments also reduced writhing. Together these data suggest that CCR1 functions to significantly modulate pain by controlling neutrophil trafficking to the inflammatory site and having an unexpected role on non-hematopoietic cells. As inflammatory diseases are often accompanied with infiltrating immune cells at the inflammatory site and pain, CCR1 antagonism may provide a dual benefit by restricting leukocyte trafficking and reducing pain.
Assuntos
Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Dor/imunologia , Receptores CCR1/imunologia , Ácido Acético , Animais , Artrite Experimental/genética , Artrite Experimental/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Movimento Celular/genética , Movimento Celular/imunologia , Citometria de Fluxo , Adjuvante de Freund , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Infiltração de Neutrófilos/genética , Neutrófilos/metabolismo , Dor/induzido quimicamente , Dor/genética , Medição da Dor/métodos , Peritonite/genética , Peritonite/imunologia , Peritonite/metabolismo , Receptores CCR1/antagonistas & inibidores , Receptores CCR1/genéticaRESUMO
Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1.
RESUMO
Syntheses and structure-activity relationships (SAR) of nonsteroidal glucocorticoid receptor (GR) agonists are described. These compounds contain azaindole moieties as A-ring mimetics and display various degrees of in vitro dissociation between gene transrepression and transactivation. Collagen induced arthritis studies in mouse have demonstrated that in vitro dissociated compounds (R)-16 and (R)-37 have steroid-like anti-inflammatory properties with improved metabolic side effect profiles, such as a reduced increase in body fat and serum insulin levels, compared to steroids.