Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673828

RESUMO

Dendritic structures play a pivotal role in the computational processes occurring within neurons. Signal propagation along dendrites relies on both passive conduction and active processes related to voltage-dependent ion channels. Among these channels, extrasynaptic N-methyl-D-aspartate channels (exNMDA) emerge as a significant contributor. Prior studies have mainly concentrated on interactions between synapses and nearby exNMDA (100 nm-10 µm from synapse), activated by presynaptic membrane glutamate. This study concentrates on the correlation between synaptic inputs and distal exNMDA (>100 µm), organized in clusters that function as signal amplifiers. Employing a computational model of a dendrite, we elucidate the mechanism underlying signal amplification in exNMDA clusters. Our findings underscore the pivotal role of the optimal spatial positioning of the NMDA cluster in determining signal amplification efficiency. Additionally, we demonstrate that exNMDA subunits characterized by a large conduction decay constant. Specifically, NR2B subunits exhibit enhanced effectiveness in signal amplification compared to subunits with steeper conduction decay. This investigation extends our understanding of dendritic computational processes by emphasizing the significance of distant exNMDA clusters as potent signal amplifiers. The implications of our computational model shed light on the spatial considerations and subunit characteristics that govern the efficiency of signal amplification in dendritic structures, offering valuable insights for future studies in neurobiology and computational neuroscience.


Assuntos
Simulação por Computador , Dendritos , Receptores de N-Metil-D-Aspartato , Sinapses , Receptores de N-Metil-D-Aspartato/metabolismo , Dendritos/metabolismo , Sinapses/metabolismo , Animais , Modelos Neurológicos , Humanos , Transdução de Sinais
2.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397023

RESUMO

Microglia and astrocytes are essential in sustaining physiological networks in the central nervous system, with their ability to remodel the extracellular matrix, being pivotal for synapse plasticity. Recent findings have challenged the traditional view of homogenous glial populations in the brain, uncovering morphological, functional, and molecular heterogeneity among glial cells. This diversity has significant implications for both physiological and pathological brain states. In the present study, we mechanically induced a Schaffer collateral lesion (SCL) in mouse entorhino-hippocampal slice cultures to investigate glial behavior, i.e., microglia and astrocytes, under metalloproteinases (MMPs) modulation in the lesioned area, CA3, and the denervated region, CA1. We observed distinct response patterns in the microglia and astrocytes 3 days after the lesion. Notably, GFAP-expressing astrocytes showed no immediate changes post-SCL. Microglia responses varied depending on their anatomical location, underscoring the complexity of the hippocampal neuroglial network post-injury. The MMPs inhibitor GM6001 did not affect microglial reactions in CA3, while increasing the number of Iba1-expressing cells in CA1, leading to a withdrawal of their primary branches. These findings highlight the importance of understanding glial regionalization following neural injury and MMPs modulation and pave the way for further research into glia-targeted therapeutic strategies for neurodegenerative disorders.


Assuntos
Microglia , Colaterais de Schaffer , Camundongos , Animais , Microglia/patologia , Hipocampo/patologia , Astrócitos/patologia , Metaloproteinases da Matriz
3.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298586

RESUMO

Neurodegeneration is a multifactorial process that involves multiple mechanisms. Examples of neurodegenerative diseases are Parkinson's disease, multiple sclerosis, Alzheimer's disease, prion diseases such as Creutzfeldt-Jakob's disease, and amyotrophic lateral sclerosis. These are progressive and irreversible pathologies, characterized by neuron vulnerability, loss of structure or function of neurons, and even neuron demise in the brain, leading to clinical, functional, and cognitive dysfunction and movement disorders. However, iron overload can cause neurodegeneration. Dysregulation of iron metabolism associated with cellular damage and oxidative stress is reported as a common event in several neurodegenerative diseases. Uncontrolled oxidation of membrane fatty acids triggers a programmed cell death involving iron, ROS, and ferroptosis, promoting cell death. In Alzheimer's disease, the iron content in the brain is significantly increased in vulnerable regions, resulting in a lack of antioxidant defenses and mitochondrial alterations. Iron interacts with glucose metabolism reciprocally. Overall, iron metabolism and accumulation and ferroptosis play a significant role, particularly in the context of diabetes-induced cognitive decline. Iron chelators improve cognitive performance, meaning that brain iron metabolism control reduces neuronal ferroptosis, promising a novel therapeutic approach to cognitive impairment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Ferroptose , Doenças Neurodegenerativas , Humanos , Ferro/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo
4.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834642

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique that is used against cognitive impairment in mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neurobiological mechanisms underlying the rTMS therapeutic effects are still only partially investigated. Maladaptive plasticity, glial activation, and neuroinflammation, including metalloproteases (MMPs) activation, might represent new potential targets of the neurodegenerative process and progression from MCI to AD. In this study, we aimed to evaluate the effects of bilateral rTMS over the dorsolateral prefrontal cortex (DLPFC) on plasmatic levels of MMP1, -2, -9, and -10; MMPs-related tissue inhibitors TIMP1 and TIMP2; and cognitive performances in MCI patients. Patients received high-frequency (10 Hz) rTMS (MCI-TMS, n = 9) or sham stimulation (MCI-C, n = 9) daily for four weeks, and they were monitored for six months after TMS. The plasmatic levels of MMPs and TIMPs and the cognitive and behavioral scores, based on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Beck Depression Inventory II, Beck Anxiety Inventory, and Apathy Evaluation Scale, were assessed at baseline (T0) and after 1 month (T1) and 6 months (T2) since rTMS. In the MCI-TMS group, at T2, plasmatic levels of MMP1, -9, and -10 were reduced and paralleled by increased plasmatic levels of TIMP1 and TIMP2 and improvement of visuospatial performances. In conclusion, our findings suggest that targeting DLPFC by rTMS might result in the long-term modulation of the MMPs/TIMPs system in MCI patients and the neurobiological mechanisms associated with MCI progression to dementia.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Estimulação Magnética Transcraniana/métodos , Metaloproteinase 1 da Matriz , Disfunção Cognitiva/psicologia , Doença de Alzheimer/terapia , Metaloproteinases da Matriz , Córtex Pré-Frontal
5.
Histochem Cell Biol ; 157(5): 557-567, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35175413

RESUMO

Activation of glial cells (reactive gliosis) and the purinergic pathway, together with metalloproteinase (MMP)-induced remodeling of the neural extracellular matrix (nECM), drive maladaptive changes in the spinal cord following peripheral nerve injury (PNI). We evaluated the effects on spinal maladaptive plasticity through administration of oxidized ATP (oxATP), an antagonist of P2X receptors (P2XR), and/or GM6001, an inhibitor of MMPs, in rats following spared nerve injury (SNI) of the sciatic nerve. With morpho-molecular techniques, we demonstrated a reduction in spinal reactive gliosis and changes in the neuro-glial-nECM crosstalk via expression remodeling of P2XR, nerve growth factor (NGF) receptors (TrkA and p75), and histone deacetylase 2 (HDAC2) after treatments with oxATP/GM6001. Altogether, our data suggest that MMPs and purinergic inhibition have a modulatory impact on key proteins in the neuro-glial-nECM network, acting at different levels from intracellular signaling to epigenetic modifications.


Assuntos
Traumatismos dos Nervos Periféricos , Animais , Gliose/metabolismo , Metaloproteinases da Matriz/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Medula Espinal/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768733

RESUMO

The spatial and temporal coordination of each element is a pivotal characteristic of systems, and the central nervous system (CNS) is not an exception. Glial elements and the vascular interface have been considered more recently, together with the extracellular matrix and the immune system. However, the knowledge of the single-element configuration is not sufficient to predict physiological or pathological long-lasting changes. Ionic currents, complex molecular cascades, genomic rearrangement, and the regional energy demand can be different even in neighboring cells of the same phenotype, and their differential expression could explain the region-specific progression of the most studied neurodegenerative diseases. We here reviewed the main nodes and edges of the system, which could be studied to develop a comprehensive knowledge of CNS plasticity from the neurovascular unit to the synaptic cleft. The future goal is to redefine the modeling of synaptic plasticity and achieve a better understanding of neurological diseases, pointing out cellular, subcellular, and molecular components that couple in specific neuroanatomical and functional regions.


Assuntos
Sistema Nervoso Central/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Animais , Astrócitos/metabolismo , Sistema Nervoso Central/fisiopatologia , Humanos , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuroglia/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Análise Espaço-Temporal , Sinapses/metabolismo
7.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804873

RESUMO

Different functional states determine glioblastoma (GBM) heterogeneity. Brain cancer cells coexist with the glial cells in a functional syncytium based on a continuous metabolic rewiring. However, standard glioma therapies do not account for the effects of the glial cells within the tumor microenvironment. This may be a possible reason for the lack of improvements in patients with high-grade gliomas therapies. Cell metabolism and bioenergetic fitness depend on the availability of nutrients and interactions in the microenvironment. It is strictly related to the cell location in the tumor mass, proximity to blood vessels, biochemical gradients, and tumor evolution, underlying the influence of the context and the timeline in anti-tumor therapeutic approaches. Besides the cancer metabolic strategies, here we review the modifications found in the GBM-associated glia, focusing on morphological, molecular, and metabolic features. We propose to analyze the GBM metabolic rewiring processes from a systems biology perspective. We aim at defining the crosstalk between GBM and the glial cells as modules. The complex networking may be expressed by metabolic modules corresponding to the GBM growth and spreading phases. Variation in the oxidative phosphorylation (OXPHOS) rate and regulation appears to be the most important part of the metabolic and functional heterogeneity, correlating with glycolysis and response to hypoxia. Integrated metabolic modules along with molecular and morphological features could allow the identification of key factors for controlling the GBM-stroma metabolism in multi-targeted, time-dependent therapies.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Microambiente Tumoral , Animais , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Hipóxia Tumoral , Efeito Warburg em Oncologia
8.
Int J Mol Sci ; 21(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102370

RESUMO

The synaptic cleft has been vastly investigated in the last decades, leading to a novel and fascinating model of the functional and structural modifications linked to synaptic transmission and brain processing. The classic neurocentric model encompassing the neuronal pre- and post-synaptic terminals partly explains the fine-tuned plastic modifications under both pathological and physiological circumstances. Recent experimental evidence has incontrovertibly added oligodendrocytes, astrocytes, and microglia as pivotal elements for synapse formation and remodeling (tripartite synapse) in both the developing and adult brain. Moreover, synaptic plasticity and its pathological counterpart (maladaptive plasticity) have shown a deep connection with other molecular elements of the extracellular matrix (ECM), once considered as a mere extracellular structural scaffold altogether with the cellular glue (i.e., glia). The ECM adds another level of complexity to the modern model of the synapse, particularly, for the long-term plasticity and circuit maintenance. This model, called tetrapartite synapse, can be further implemented by including the neurovascular unit (NVU) and the immune system. Although they were considered so far as tightly separated from the central nervous system (CNS) plasticity, at least in physiological conditions, recent evidence endorsed these elements as structural and paramount actors in synaptic plasticity. This scenario is, as far as speculations and evidence have shown, a consistent model for both adaptive and maladaptive plasticity. However, a comprehensive understanding of brain processes and circuitry complexity is still lacking. Here we propose that a better interpretation of the CNS complexity can be granted by a systems biology approach through the construction of predictive molecular models that enable to enlighten the regulatory logic of the complex molecular networks underlying brain function in health and disease, thus opening the way to more effective treatments.


Assuntos
Matriz Extracelular/fisiologia , Neuroglia/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Sinapses/fisiologia , Biologia de Sistemas/métodos , Animais , Sistema Nervoso Central/fisiologia , Epilepsia/fisiopatologia , Humanos , Neuroglia/citologia , Neurônios/citologia
9.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066304

RESUMO

Stroke is a major challenge in modern medicine and understanding the role of the neuronal extracellular matrix (NECM) in its pathophysiology is fundamental for promoting brain repair. Currently, stroke research is focused on the neurovascular unit (NVU). Impairment of the NVU leads to neuronal loss through post-ischemic and reperfusion injuries, as well as coagulatory and inflammatory processes. The ictal core is produced in a few minutes by the high metabolic demand of the central nervous system. Uncontrolled or prolonged inflammatory response is characterized by leukocyte infiltration of the injured site that is limited by astroglial reaction. The metabolic failure reshapes the NECM through matrix metalloproteinases (MMPs) and novel deposition of structural proteins continues within months of the acute event. These maladaptive reparative processes are responsible for the neurological clinical phenotype. In this review, we aim to provide a systems biology approach to stroke pathophysiology, relating the injury to the NVU with the pervasive metabolic failure, inflammatory response and modifications of the NECM. The available data will be used to build a protein-protein interaction (PPI) map starting with 38 proteins involved in stroke pathophysiology, taking into account the timeline of damage and the co-expression scores of their RNA patterns The application of the proposed network could lead to a more accurate design of translational experiments aiming at improving both the therapy and the rehabilitation processes.


Assuntos
Matriz Extracelular/metabolismo , Gliose/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Humanos , Metaloproteinases da Matriz/metabolismo , Acidente Vascular Cerebral/patologia
10.
Int J Mol Sci ; 18(10)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29023416

RESUMO

Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.


Assuntos
Fatores de Coagulação Sanguínea , Coagulação Sanguínea , Doenças do Sistema Nervoso Central/sangue , Animais , Astrócitos/metabolismo , Fatores de Coagulação Sanguínea/metabolismo , Barreira Hematoencefálica/metabolismo , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/terapia , Humanos , Microglia/metabolismo , Neurônios/metabolismo , Proteólise , Transdução de Sinais
11.
Cell Mol Neurobiol ; 36(1): 37-46, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26084599

RESUMO

Reactive astrocytes and activated microglia are the key players in several pathophysiologic modifications of the central nervous system. We used the spared nerve injury (SNI) of the sciatic nerve to induce glial maladaptive response in the ventral horn of lumbar spinal cord and examine its role in the remodeling of the tripartite synapse plasticity. Imaging the ventral horn revealed that SNI was associated with both an early microglial and astrocytic activation, assessed, respectively, by analysis of Iba1 and GFAP expression. Microglia, in particular, localized peculiarly surrounding the motor neurons somata. Perineuronal astrocytes, which play a key role in maintaining the homeostasis of neuronal circuitry, underwent a substantial phenotypic change following peripheral axotomy, producing reactive gliosis. The gliosis was associated with the reduction of glial aminoacid transporters (GLT1 and GlyT1) and increase of neuronal glutamate transporter EAAC1. Although the expression of GABAergic neuronal marker GAD65/67 showed no change, glutamate increase, as demonstrated by HPLC analysis, shifted the excitatory/inhibitory balance as showed by the net increase of the glutamate/GABA ratio. Moreover, endogenous NGF levels were altered in SNI animals and not restored by the intrathecal NGF administration. This treatment reverted phenotypic changes associated with reactive astrocytosis, but failed to modify microglia activation. These findings on one hand confirm the correlation between gliopathy and maladaptive plasticity of the spinal synaptic circuitry, on the other hand add new data concerning the complex peculiar behavior of different glial cells in neuronal degenerative processes, defining a special role of microglia in sustaining the inflammatory response.


Assuntos
Astrócitos/metabolismo , Imunidade/efeitos dos fármacos , Microglia/metabolismo , Fator de Crescimento Neural/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/patologia , Corno Ventral da Medula Espinal/patologia , Animais , Antígenos Nucleares/metabolismo , Astrócitos/efeitos dos fármacos , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cromatografia Líquida de Alta Pressão , Gliose/patologia , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/metabolismo , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Corno Ventral da Medula Espinal/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
12.
Neurochem Res ; 41(7): 1507-15, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26935742

RESUMO

The integrity of the central nervous system (CNS) matrix is crucial for its proper function. Loss of the lattice-like structure compromise synaptic stability and can lead to the disruption of the excitatory/inhibitory balance, astrocytosis, maladaptive plasticity and neuronal death. Perineuronal nets (PNNs) in the extracellular matrix (ECM) provide synaptic integration and control the functional wiring between neurons. These nets are significantly modified during CNS disorders, such as neurodegenerative, cerebrovascular and inflammatory diseases. The breakdown or the modification of PNNs could be due to the activity of matrix metalloproteinases (MMPs) or to the deposition of proteoglycans, glycoproteins, and hyaluronic acid. The expression and the activity of ECM-degrading enzymes can be regulated with tissue inhibitors of MMPs or via transcriptional and epigenetic silencing or enhancement (i.e. via histone deacetylases). The identification of molecules and mechanisms able to modify these processes will be essential for a new perspective on brain functioning in health and disease, leading to a target-directed approach with drugs directly interfering with the molecular mechanism underlying neurological disorders.


Assuntos
Matriz Extracelular/metabolismo , Rede Nervosa/metabolismo , Doenças do Sistema Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Matriz Extracelular/patologia , Humanos , Rede Nervosa/patologia , Doenças do Sistema Nervoso/patologia , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia
13.
Pain ; 165(8): 1674-1688, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452215

RESUMO

ABSTRACT: Botulinum toxin (BoNT), a presynaptic inhibitor of acetylcholine (Ach) release at the neuromuscular junction (NMJ), is a successful and safe drug for the treatment of several neurological disorders. However, a wide and recent literature review has demonstrated that BoNT exerts its effects not only at the "periphery" but also within the central nervous system (CNS). Studies from animal models, in fact, have shown a retrograde transport to the CNS, thus modulating synaptic function. The increasing number of articles reporting efficacy of BoNT on chronic neuropathic pain (CNP), a complex disease of the CNS, demonstrates that the central mechanisms of BoNT are far from being completely elucidated. In this new light, BoNT might interfere with the activity of spinal, brain stem, and cortical circuitry, modulating excitability and the functional organization of CNS in healthy conditions. Botulinum toxins efficacy on CNP is the result of a wide and complex action on many and diverse mechanisms at the basis of the maladaptive plasticity, the core of the pathogenesis of CNP. This systematic review aims to discuss in detail the BoNT's mechanisms and effects on peripheral and central neuroplasticity, at the basis for the clinical efficacy in CNP syndromes.


Assuntos
Toxinas Botulínicas Tipo A , Neuralgia , Animais , Humanos , Toxinas Botulínicas Tipo A/uso terapêutico , Toxinas Botulínicas Tipo A/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Neuralgia/tratamento farmacológico
14.
Brain Sci ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38671983

RESUMO

Glioblastoma multiforme (GBM) stands out as the most tremendous brain tumor, constituting 60% of primary brain cancers, accompanied by dismal survival rates. Despite advancements in research, therapeutic options remain limited to chemotherapy and surgery. GBM molecular heterogeneity, the intricate interaction with the tumor microenvironment (TME), and non-selective treatments contribute to the neoplastic relapse. Diagnostic challenges arise from GBM advanced-stage detection, necessitating the exploration of novel biomarkers for early diagnosis. Using data from the literature and a bioinformatic tool, the current manuscript delineates the molecular interplay between human GBM, astrocytes, and myeloid cells, underscoring selected protein pathways belonging to astroglia and myeloid lineage, which can be considered for targeted therapies. Moreover, the pivotal role of extracellular vesicles (EVs) in orchestrating a favorable microenvironment for cancer progression is highlighted, suggesting their utility in identifying biomarkers for GBM early diagnosis.

15.
FEBS J ; 291(13): 2811-2835, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38362803

RESUMO

Neuronal differentiation is regulated by nerve growth factor (NGF) and other neurotrophins. We explored the impact of NGF on mitochondrial dynamics and metabolism through time-lapse imaging, metabolomics profiling, and computer modeling studies. We show that NGF may direct differentiation by stimulating fission, thereby causing selective mitochondrial network fragmentation and mitophagy, ultimately leading to increased mitochondrial quality and respiration. Then, we reconstructed the dynamic fusion-fission-mitophagy cycling of mitochondria in a computer model, integrating these processes into a single network mechanism. Both the computational model and the simulations are able to reproduce the proposed mechanism in terms of mitochondrial dynamics, levels of reactive oxygen species (ROS), mitophagy, and mitochondrial quality, thus providing a computational tool for the interpretation of the experimental data and for future studies aiming to detail further the action of NGF on mitochondrial processes. We also show that changes in these mitochondrial processes are intertwined with a metabolic function of NGF in differentiation: NGF directs a profound metabolic rearrangement involving glycolysis, TCA cycle, and the pentose phosphate pathway, altering the redox balance. This metabolic rewiring may ensure: (a) supply of both energy and building blocks for the anabolic processes needed for morphological reorganization, as well as (b) redox homeostasis.


Assuntos
Diferenciação Celular , Mitocôndrias , Dinâmica Mitocondrial , Mitofagia , Fator de Crescimento Neural , Neurônios , Espécies Reativas de Oxigênio , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Animais , Neurônios/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células PC12 , Ratos , Mitofagia/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glicólise , Simulação por Computador , Reprogramação Metabólica
16.
Neurobiol Dis ; 50: 171-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23103417

RESUMO

Seizures are a common outcome of cerebrovascular events as well as of traumatic brain injuries. Thrombin, a protease-activated receptor (PAR) agonist, has been implicated in the onset of seizures in these settings, yet its mode of action is not entirely clear. In this study, the effect of thrombin and a PAR-1 agonist on neuronal excitability and synaptic currents was assessed by whole cell-patch recordings of pyramidal neurons in rat hippocampal slices. In addition, PAR-1 distribution in different hippocampal regions was assessed using immunohistochemistry. We found that thrombin caused an increase in spontaneous action potential discharges of CA3 but not of CA1 pyramidal neurons. When excitatory synaptic activity was blocked, thrombin caused a marked reduction in spontaneous IPSCs in CA3 neurons and a marked increase in the frequency of IPSCs in CA1 neurons. These effects are likely to be local, as they were reproduced in TTX-treated slices. In parallel, thrombin increased both the frequency and the amplitude of mEPSCs only in CA3 neurons. These effects were blocked by a selective PAR-1 antagonist. The higher expression of PAR-1 in stratum lucidum of CA3 is correlated with the effects of thrombin in this region. These results suggest that thrombin triggers the generation of epileptic seizures by reducing the inhibitory and increasing the excitatory tone in CA3 neurons, providing a novel insight to the pathophysiology of seizures following cerebrovascular events and present new avenues for therapeutic intervention.


Assuntos
Células Piramidais/metabolismo , Convulsões/metabolismo , Transmissão Sináptica/fisiologia , Trombina/metabolismo , Animais , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Imuno-Histoquímica , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Células Piramidais/fisiopatologia , Ratos , Ratos Wistar , Receptor PAR-1/metabolismo , Convulsões/fisiopatologia
17.
Front Neurosci ; 17: 1249815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575294

RESUMO

This review uncovers the intricate relationship between presenilins, calcium, and mitochondria in the context of Alzheimer's disease (AD), with a particular focus on the involvement of presenilin mutations in mitochondrial dysfunction. So far, it is unclear whether the impairment of mitochondrial function arises primarily from damage inflicted by ß-amyloid upon mitochondria or from the disruption of calcium homeostasis due to presenilins dysfunctions. The roles of presenilins in mitophagy, autophagy, mitochondrial dynamics, and many other functions, non-γ-secretase related, also require close attention in future research. Resolution of contradictions in understanding of presenilins cellular functions are needed for new effective therapeutic strategies for AD.

18.
Biomedicines ; 11(3)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36979840

RESUMO

Alzheimer's disease (AD) is a progressive and degenerative disease producing the most common type of dementia worldwide. The main pathogenetic hypothesis in recent decades has been the well-known amyloidogenic hypothesis based on the involvement of two proteins in AD pathogenesis: amyloid ß (Aß) and tau. Amyloid deposition reported in all AD patients is nowadays considered an independent risk factor for cognitive decline. Vascular damage and blood-brain barrier (BBB) failure in AD is considered a pivotal mechanism for brain injury, with increased deposition of both immunoglobulins and fibrin. Furthermore, BBB dysfunction could be an early sign of cognitive decline and the early stages of clinical AD. Vascular damage generates hypoperfusion and relative hypoxia in areas with high energy demand. Long-term hypoxia and the accumulation within the brain parenchyma of neurotoxic molecules could be seeds of a self-sustaining pathological progression. Cellular dysfunction comprises all the elements of the neurovascular unit (NVU) and neuronal loss, which could be the result of energy failure and mitochondrial impairment. Brain glucose metabolism is compromised, showing a specific region distribution. This energy deficit worsens throughout aging. Mild cognitive impairment has been reported to be associated with a glucose deficit in the entorhinal cortex and in the parietal lobes. The current aim is to understand the complex interactions between amyloid ß (Aß) and tau and elements of the BBB and NVU in the brain. This new approach aimed at the study of metabolic mechanisms and energy insufficiency due to mitochondrial impairment would allow us to define therapies aimed at predicting and slowing down the progression of AD.

19.
Hum Brain Mapp ; 33(4): 778-96, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21484953

RESUMO

OBJECTIVES: Recent fMRI studies have shown that it is possible to reliably identify the default-mode network (DMN) in the absence of any task, by resting-state connectivity analyses in healthy volunteers. We here aimed to identify the DMN in the challenging patient population of disorders of consciousness encountered following coma. EXPERIMENTAL DESIGN: A spatial independent component analysis-based methodology permitted DMN assessment, decomposing connectivity in all its different sources either neuronal or artifactual. Three different selection criteria were introduced assessing anticorrelation-corrected connectivity with or without an automatic masking procedure and calculating connectivity scores encompassing both spatial and temporal properties. These three methods were validated on 10 healthy controls and applied to an independent group of 8 healthy controls and 11 severely brain-damaged patients [locked-in syndrome (n = 2), minimally conscious (n = 1), and vegetative state (n = 8)]. PRINCIPAL OBSERVATIONS: All vegetative patients showed fewer connections in the default-mode areas, when compared with controls, contrary to locked-in patients who showed near-normal connectivity. In the minimally conscious-state patient, only the two selection criteria considering both spatial and temporal properties were able to identify an intact right lateralized BOLD connectivity pattern, and metabolic PET data suggested its neuronal origin. CONCLUSIONS: When assessing resting-state connectivity in patients with disorders of consciousness, it is important to use a methodology excluding non-neuronal contributions caused by head motion, respiration, and heart rate artifacts encountered in all studied patients.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Transtornos da Consciência/fisiopatologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Adulto Jovem
20.
Neural Plast ; 2012: 425818, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23091738

RESUMO

Astrocytic Ca(2+) dynamics have been extensively studied in ex vivo models; however, the recent development of two-photon microscopy and astrocyte-specific labeling has allowed the study of Ca(2+) signaling in living central nervous system. Ca(2+) waves in astrocytes have been described in cultured cells and slice preparations, but evidence for astrocytic activation during sensory activity is lacking. There are currently few methods to image living spinal cord: breathing and heart-beating artifacts have impeded the widespread application of this technique. We here imaged the living spinal cord by two-photon microscopy in C57BL6/J mice. Through pressurized injection, we specifically loaded spinal astrocytes using the red fluorescent dye sulforhodamine 101 (SR101) and imaged astrocytic Ca(2+) levels with Oregon-Green BAPTA-1 (OGB). Then, we studied astrocytic Ca(2+) levels at rest and after right electrical hind paw stimulation. Sensory stimulation significantly increased astrocytic Ca(2+) levels within the superficial dorsal horn of the spinal cord compared to rest. In conclusion, in vivo morphofunctional imaging of living astrocytes in spinal cord revealed that astrocytes actively participate to sensory stimulation.


Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Células do Corno Posterior/fisiologia , Medula Espinal/fisiologia , Animais , Astrócitos/citologia , Cálcio/metabolismo , Estimulação Elétrica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica/normas , Células do Corno Posterior/citologia , Medula Espinal/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA