Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nature ; 573(7773): 281-286, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31485078

RESUMO

Enzymes that catalyse CpG methylation in DNA, including the DNA methyltransferases 1 (DNMT1), 3A (DNMT3A) and 3B (DNMT3B), are indispensable for mammalian tissue development and homeostasis1-4. They are also implicated in human developmental disorders and cancers5-8, supporting the critical role of DNA methylation in the specification and maintenance of cell fate. Previous studies have suggested that post-translational modifications of histones are involved in specifying patterns of DNA methyltransferase localization and DNA methylation at promoters and actively transcribed gene bodies9-11. However, the mechanisms that control the establishment and maintenance of intergenic DNA methylation remain poorly understood. Tatton-Brown-Rahman syndrome (TBRS) is a childhood overgrowth disorder that is defined by germline mutations in DNMT3A. TBRS shares clinical features with Sotos syndrome (which is caused by haploinsufficiency of NSD1, a histone methyltransferase that catalyses the dimethylation of histone H3 at K36 (H3K36me2)8,12,13), which suggests that there is a mechanistic link between these two diseases. Here we report that NSD1-mediated H3K36me2 is required for the recruitment of DNMT3A and maintenance of DNA methylation at intergenic regions. Genome-wide analysis shows that the binding and activity of DNMT3A colocalize with H3K36me2 at non-coding regions of euchromatin. Genetic ablation of Nsd1 and its paralogue Nsd2 in mouse cells results in a redistribution of DNMT3A to H3K36me3-modified gene bodies and a reduction in the methylation of intergenic DNA. Blood samples from patients with Sotos syndrome and NSD1-mutant tumours also exhibit hypomethylation of intergenic DNA. The PWWP domain of DNMT3A shows dual recognition of H3K36me2 and H3K36me3 in vitro, with a higher binding affinity towards H3K36me2 that is abrogated by TBRS-derived missense mutations. Together, our study reveals a trans-chromatin regulatory pathway that connects aberrant intergenic CpG methylation to human neoplastic and developmental overgrowth.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Intergênico/metabolismo , Histonas/metabolismo , Animais , Linhagem Celular , DNA Metiltransferase 3A , Estudo de Associação Genômica Ampla , Transtornos do Crescimento/genética , Transtornos do Crescimento/fisiopatologia , Humanos , Camundongos , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Síndrome de Sotos/genética , Síndrome de Sotos/fisiopatologia
2.
Nature ; 576(7786): 274-280, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31802000

RESUMO

Embryonal tumours with multilayered rosettes (ETMRs) are aggressive paediatric embryonal brain tumours with a universally poor prognosis1. Here we collected 193 primary ETMRs and 23 matched relapse samples to investigate the genomic landscape of this distinct tumour type. We found that patients with tumours in which the proposed driver C19MC2-4 was not amplified frequently had germline mutations in DICER1 or other microRNA-related aberrations such as somatic amplification of miR-17-92 (also known as MIR17HG). Whole-genome sequencing revealed that tumours had an overall low recurrence of single-nucleotide variants (SNVs), but showed prevalent genomic instability caused by widespread occurrence of R-loop structures. We show that R-loop-associated chromosomal instability can be induced by the loss of DICER1 function. Comparison of primary tumours and matched relapse samples showed a strong conservation of structural variants, but low conservation of SNVs. Moreover, many newly acquired SNVs are associated with a mutational signature related to cisplatin treatment. Finally, we show that targeting R-loops with topoisomerase and PARP inhibitors might be an effective treatment strategy for this deadly disease.


Assuntos
MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , RNA Helicases DEAD-box/genética , DNA Topoisomerases Tipo I/genética , Humanos , Mutação , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante , Recidiva , Ribonuclease III/genética
3.
Int J Cancer ; 151(11): 2043-2054, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932450

RESUMO

Immune checkpoint blockade (ICB) has led to durable clinical responses in multiple cancer types. However, biomarkers that identify which patients are most likely to respond to ICB are not well defined. Many putative biomarkers developed from a small number of samples often fail to maintain their predictive status in larger validation cohorts. We show across multiple human malignancies and syngeneic murine tumor models that neither pretreatment T cell receptor (TCR) clonality nor changes in clonality after ICB correlate with response. Dissection of tumor infiltrating lymphocytes pre- and post-ICB by paired single-cell RNA sequencing and single-cell TCR sequencing reveals conserved and distinct transcriptomic features in expanded TCR clonotypes between anti-PD1 responder and nonresponder murine tumor models. Overall, our results indicate a productive anti-tumor response is agnostic of TCR clonal expansion. Further, we used single-cell transcriptomics to develop a CD8+ T cell specific gene signature for a productive anti-tumor response and show the response signature to be associated with overall survival (OS) on nivolumab monotherapy in CheckMate-067, a phase 3 clinical trial in metastatic melanoma. These results highlight the value of leveraging single-cell assays to dissect heterogeneous tumor and immune subsets and define cell-type specific transcriptomic biomarkers of ICB response.


Assuntos
Melanoma , Receptor de Morte Celular Programada 1 , Animais , Linfócitos T CD8-Positivos , Humanos , Inibidores de Checkpoint Imunológico , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Receptores de Antígenos de Linfócitos T/genética
4.
Am J Hum Genet ; 90(4): 693-700, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22425360

RESUMO

Joubert syndrome (JBTS) is an autosomal-recessive disorder characterized by a distinctive mid-hindbrain malformation, developmental delay with hypotonia, ocular-motor apraxia, and breathing abnormalities. Although JBTS was first described more than 40 years ago in French Canadian siblings, the causal mutations have not yet been identified in this family nor in most French Canadian individuals subsequently described. We ascertained a cluster of 16 JBTS-affected individuals from 11 families living in the Lower St. Lawrence region. SNP genotyping excluded the presence of a common homozygous mutation that would explain the clustering of these individuals. Exome sequencing performed on 15 subjects showed that nine affected individuals from seven families (including the original JBTS family) carried rare compound-heterozygous mutations in C5ORF42. Two missense variants (c.4006C>T [p.Arg1336Trp] and c.4690G>A [p.Ala1564Thr]) and a splicing mutation (c.7400+1G>A), which causes exon skipping, were found in multiple subjects that were not known to be related, whereas three other truncating mutations (c.6407del [p.Pro2136Hisfs*31], c.4804C>T [p.Arg1602*], and c.7477C>T [p.Arg2493*]) were identified in single individuals. None of the unaffected first-degree relatives were compound heterozygous for these mutations. Moreover, none of the six putative mutations were detected among 477 French Canadian controls. Our data suggest that mutations in C5ORF42 explain a large portion of French Canadian individuals with JBTS.


Assuntos
Doenças Cerebelares/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Mutação , Anormalidades Múltiplas , Adulto , Sequência de Bases , Canadá , Cerebelo/anormalidades , Criança , Pré-Escolar , Exoma , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Retina/anormalidades
5.
Hum Mutat ; 35(11): 1285-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25130867

RESUMO

Mutations in the nuclear-encoded mitochondrial aminoacyl-tRNA synthetases are associated with a range of clinical phenotypes. Here, we report a novel disorder in three adult patients with a phenotype including cataracts, short-stature secondary to growth hormone deficiency, sensorineural hearing deficit, peripheral sensory neuropathy, and skeletal dysplasia. Using SNP genotyping and whole-exome sequencing, we identified a single likely causal variant, a missense mutation in a conserved residue of the nuclear gene IARS2, encoding mitochondrial isoleucyl-tRNA synthetase. The mutation is homozygous in the affected patients, heterozygous in carriers, and absent in control chromosomes. IARS2 protein level was reduced in skin cells cultured from one of the patients, consistent with a pathogenic effect of the mutation. Compound heterozygous mutations in IARS2 were independently identified in a previously unreported patient with a more severe mitochondrial phenotype diagnosed as Leigh syndrome. This is the first report of clinical findings associated with IARS2 mutations.


Assuntos
Catarata/genética , Nanismo Hipofisário/genética , Perda Auditiva Neurossensorial/genética , Isoleucina-tRNA Ligase/genética , Doença de Leigh/genética , Mutação , Doenças do Sistema Nervoso Periférico/genética , Adulto , Sequência de Aminoácidos , Encéfalo/patologia , Catarata/diagnóstico , Consanguinidade , Análise Mutacional de DNA , Nanismo Hipofisário/diagnóstico , Feminino , Genes Recessivos , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Isoleucina-tRNA Ligase/química , Doença de Leigh/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Linhagem , Doenças do Sistema Nervoso Periférico/diagnóstico , Fenótipo , Alinhamento de Sequência , Síndrome
6.
Bioinformatics ; 29(18): 2365-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23825369

RESUMO

MOTIVATION: Feature selection is one of the main challenges in analyzing high-throughput genomic data. Minimum redundancy maximum relevance (mRMR) is a particularly fast feature selection method for finding a set of both relevant and complementary features. Here we describe the mRMRe R package, in which the mRMR technique is extended by using an ensemble approach to better explore the feature space and build more robust predictors. To deal with the computational complexity of the ensemble approach, the main functions of the package are implemented and parallelized in C using the openMP Application Programming Interface. RESULTS: Our ensemble mRMR implementations outperform the classical mRMR approach in terms of prediction accuracy. They identify genes more relevant to the biological context and may lead to richer biological interpretations. The parallelized functions included in the package show significant gains in terms of run-time speed when compared with previously released packages. AVAILABILITY: The R package mRMRe is available on Comprehensive R Archive Network and is provided open source under the Artistic-2.0 License. The code used to generate all the results reported in this application note is available from Supplementary File 1. CONTACT: bhaibeka@ircm.qc.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica/métodos , Software , Algoritmos , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Irinotecano
7.
Acta Neuropathol ; 128(5): 615-27, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25077668

RESUMO

A remarkably large number of "epigenetic regulators" have been recently identified to be altered in cancers and a rapidly expanding body of literature points to "epigenetic addiction" (an aberrant epigenetic state to which a tumor is addicted) as a new previously unsuspected mechanism of oncogenesis. Although mutations are also found in canonical signaling pathway genes, we and others identified chromatin-associated proteins to be more commonly altered by somatic alterations than any other class of oncoprotein in several subgroups of childhood high-grade brain tumors. Furthermore, as these childhood malignancies carry fewer non-synonymous somatic mutations per case in contrast to most adult cancers, these mutations are likely drivers in these tumors. Herein, we will use as examples of this novel hallmark of oncogenesis high-grade astrocytomas, including glioblastoma, and a subgroup of embryonal tumors, embryonal tumor with multilayered rosettes (ETMR) to describe the novel molecular defects uncovered in these deadly tumors. We will further discuss evidence for their profound effects on the epigenome. The relative genetic simplicity of these tumors promises general insights into how mutations in the chromatin machinery modify downstream epigenetic signatures to drive transformation, and how to target this plastic genetic/epigenetic interface.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Epigênese Genética/genética , Humanos , Pediatria
8.
Sci Rep ; 12(1): 12298, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853984

RESUMO

In an effort to identify rare alleles associated with adolescent idiopathic scoliosis (AIS) whole-exome sequencing was performed on a discovery cohort of 73 unrelated patients and 70 age-and sex matched controls, all of French-Canadian ancestry. A collapsing gene burden test was performed to analyze rare protein-altering variants using case-control statistics. Since no single gene achieved statistical significance, targeted exon sequencing was performed for 24 genes with the smallest p values, in an independent replication cohort of unrelated severely affected females with AIS and sex-matched controls (N = 96 each). An excess of rare, potentially protein-altering variants was noted in one particular gene, FAT3, although it did not achieve statistical significance. Independently, we sequenced the exomes of all members of a rare multiplex family of three affected sisters and unaffected parents. All three sisters were compound heterozygous for two rare protein-altering variants in FAT3. The parents were single heterozygotes for each variant. The two variants in the family were also present in our discovery cohort. A second validation step was done, using another independent replication cohort of 258 unrelated AIS patients having reach their skeletal maturity and 143 healthy controls to genotype nine FAT3 gene variants, including the two variants previously identified in the multiplex family: p.L517S (rs139595720) and p.L4544F (rs187159256). Interestingly, two FAT3 variants, rs139595720 (genotype A/G) and rs80293525 (genotype C/T), were enriched in severe scoliosis cases (4.5% and 2.7% respectively) compared to milder cases (1.4% and 0.7%) and healthy controls (1.6% and 0.8%). Our results implicate FAT3 as a new candidate gene in the etiology of AIS.


Assuntos
Caderinas , Fator de Crescimento Epidérmico , Cifose , Escoliose , Adolescente , Alelos , Caderinas/genética , Fator de Crescimento Epidérmico/genética , Exoma , Feminino , Predisposição Genética para Doença , Humanos , Cifose/genética , Polimorfismo de Nucleotídeo Único , Escoliose/genética
9.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35304405

RESUMO

BACKGROUND: The phase 3 CheckMate 214 trial demonstrated higher response rates and improved overall survival with nivolumab plus ipilimumab versus sunitinib in first-line therapy for advanced clear-cell renal cell carcinoma (RCC). An unmet need exists to identify patients with RCC who are most likely to benefit from treatment with nivolumab plus ipilimumab. METHODS: In exploratory analyses, pretreatment levels of programmed death ligand 1 were assessed by immunohistochemistry. Genomic and transcriptomic biomarkers (including tumor mutational burden and gene expression signatures) were also investigated. RESULTS: Biomarkers previously associated with benefit from immune checkpoint inhibitor-containing regimens in RCC were not predictive for survival in patients with RCC treated with nivolumab plus ipilimumab. Analysis of gene expression identified an association between an inflammatory response and progression-free survival with nivolumab plus ipilimumab. CONCLUSIONS: The exploratory analyses reveal relationships between molecular biomarkers and provide supportive data on how the inflammation status of the tumor microenvironment may be important for identifying predictive biomarkers of response and survival with combination immunotherapy in patients with RCC. Further validation may help to provide biomarker-driven precision treatment for patients with RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Renais/patologia , Ensaios Clínicos Fase III como Assunto , Humanos , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Neoplasias Renais/patologia , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Sunitinibe/uso terapêutico , Microambiente Tumoral
10.
Mol Vis ; 17: 1850-61, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21850159

RESUMO

PURPOSE: Nanophthalmos is a rare genetic ocular disorder in which the eyes of affected individuals are abnormally small. Patients suffer from severe hyperopia as a result of their markedly reduced axial lengths, but otherwise are capable of seeing well unlike other more general forms of microphthalmia. To date one gene for nanophthalmos has been identified, encoding the membrane-type frizzled related protein MFRP. Identification of additional genes for nanophthalmos will improve our understanding of normal developmental regulation of eye growth. METHODS: We ascertained a cohort of families from eastern Canada and Mexico with familial nanophthalmos. We performed high density microsatellite and high density single nucleotide polymorphism (SNP) genotyping to identify potential chromosomal regions of linkage. We sequenced coding regions of genes in the linked interval by traditional PCR-based Sanger capillary electrophoresis methods. We cloned and sequenced a novel cDNA from a putative causal gene to verify gene structure. RESULTS: We identified a linked locus on chromosome 2q37 with a peak logarithm (base 10) of odds (LOD) score of 4.7. Sequencing of coding exons of all genes in the region identified multiple segregating variants in one gene, recently annotated as serine protease gene (PRSS56), coding for a predicted trypsin serine protease-like protein. One of our families was homozygous for a predicted pathogenic missense mutation, one family was compound heterozygous for two predicted pathogenic missense mutations, and one family was compound heterozygous for a predicted pathogenic missense mutation plus a frameshift leading to obligatory truncation of the predicted protein. The PRSS56 gene structure in public databases is based on a virtual transcript assembled from overlapping incomplete cDNA clones; we have now validated the structure of a full-length transcript from embryonic mouse brain RNA. CONCLUSIONS: PRSS56 is a good candidate for the causal gene for nanophthalmos in our families.


Assuntos
Olho/fisiopatologia , Hiperopia/genética , Microftalmia/genética , Serina Proteases , Animais , Sequência de Bases , Canadá , Clonagem Molecular , Estudos de Coortes , Análise Mutacional de DNA , Éxons , Olho/patologia , Ligação Genética , Genótipo , Técnicas de Genotipagem , Heterozigoto , Homozigoto , Humanos , Hiperopia/etiologia , Hiperopia/patologia , Escore Lod , Proteínas de Membrana/genética , México , Camundongos , Microftalmia/complicações , Microftalmia/patologia , Dados de Sequência Molecular , Mutação , Linhagem , Serina Proteases/genética
11.
Commun Med (Lond) ; 1: 56, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602225

RESUMO

Background: Tumor mutational burden (TMB) has been proposed as a predictive biomarker of response to immunotherapy. Efforts to standardize TMB scores for use in the clinic and to identify the factors that could impact TMB scores are of high importance. However, the biopsy collection site has not been assessed as a factor that may influence TMB scores. Methods: We examine a real-world cohort comprising 137,771 specimens across 47 tissues in 12 indications profiled by the FoundationOne assay (Foundation Medicine, Cambridge, MA) to assess the prevalence of biopsy sites for each indication and their TMB scores distribution. Results: We observe a wide variety of biopsy sites from which specimens are sent for genomic testing and show that TMB scores differ in a cancer- and tissue-specific manner. For example, brain or adrenal gland specimens from NSCLC patients show higher TMB scores than local lung specimens (mean difference 3.31 mut/Mb; p < 0.01, 3.90 mut/Mb; p < 0.01, respectively), whereas bone specimens show no difference. Conclusions: Our data shed light on the biopsied tissue as a driver of TMB measurement variability in clinical practice.

12.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658305

RESUMO

BACKGROUND: Nivolumab is an immune checkpoint inhibitor targeting the programmed death-1 receptor that improves survival in a subset of patients with clear cell renal cell carcinoma (ccRCC). In contrast to other tumor types that respond to immunotherapy, factors such as programmed death ligand-1 (PD-L1) status and tumor mutational burden show limited predictive utility in ccRCC. To address this gap, we report here the first molecular characterization of nivolumab response using paired index lesions, before and during treatment of metastatic ccRCC. METHODS: We analyzed gene expression and T-cell receptor (TCR) clonality using lesion-paired biopsies provided in the CheckMate 009 trial and integrated the results with their PD-L1/CD4/CD8 status, genomic mutation status and serum cytokine assays. Statistical tests included linear mixed models, logistic regression models, Fisher's exact test, and Kruskal-Wallis rank-sum test. RESULTS: We identified transcripts related to response, both at baseline and on therapy, including several that are amenable to peripheral bioassays or to therapeutic intervention. At both timepoints, response was positively associated with T-cell infiltration but not associated with TCR clonality, and some non-Responders were highly infiltrated. Lower baseline T-cell infiltration correlated with elevated transcription of Wnt/ß-catenin signaling components and hypoxia-regulated genes, including the Treg chemoattractant CCL28. On treatment, analysis of the non-responding patients whose tumors were highly T-cell infiltrated suggests association of the RIG-I-MDA5 pathway in their nivolumab resistance. We also analyzed our data using previous transcriptional classifications of ccRCC and found they concordantly identified a molecular subtype that has enhanced nivolumab response but is sunitinib-resistant. CONCLUSION: Our study describes molecular characteristics of response and resistance to nivolumab in patients with metastatic ccRCC, potentially impacting patient selection and first-line treatment decisions. TRIAL REGISTRATION NUMBER: NCT01358721.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Antígeno B7-H1/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Antígenos CD4/genética , Antígenos CD8/genética , Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Citocinas/sangue , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Renais/sangue , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Mutação , Nivolumabe/efeitos adversos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Resultado do Tratamento
13.
ESMO Open ; 5(2)2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32312757

RESUMO

INTRODUCTION: Somatic mutations in STK11 and KEAP1, frequently comutated in non-squamous non-small cell lung cancer (NSQ NSCLC), have been associated with poor response to immune checkpoint blockade (ICB). However, previous reports lack non-ICB controls needed to properly ascertain the predictive nature of those biomarkers. The objective of this study was to evaluate the predictive versus prognostic effect of STK11 or KEAP1 mutations in NSQ NSCLC. METHODS: Patients diagnosed with stage IIIB, IIIC, IVA or IVB NSQ NSCLC from a real-world data cohort from the Flatiron Health Network linked with genetic testing from Foundation Medicine were retrospectively assessed. Real-world, progression-free survival (rwPFS) and overall survival (OS) were calculated from time of initiation of first-line treatment. RESULTS: We analysed clinical and mutational data for 2276 patients including patients treated with anti-programmed death-1 (PD-1)/anti-programmed death ligand 1 (PD-L1) inhibitors at first line (n=574). Mutations in STK11 or KEAP1 were associated with poor outcomes across multiple therapeutic classes and were not specifically associated with poor outcomes in ICB cohorts. There was no observable interaction between STK11 mutations and anti-PD-1/anti-PD-L1 treatment on rwPFS (HR, 1.05; 95% CI 0.76 to 1.44; p=0.785) or OS (HR, 1.13; 95% CI 0.76 to 1.67; p=0.540). Similarly, there was no observable interaction between KEAP1 mutations and treatment on rwPFS (HR, 0.93; 95% CI 0.67 to 1.28; p=0.653) or OS (HR, 0.98; 95% CI 0.66 to 1.45; p=0.913). CONCLUSION: Our results show that STK11-KEAP1 mutations are prognostic, not predictive, biomarkers for anti-PD-1/anti-PD-L1 therapy.


Assuntos
Adenocarcinoma/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Biomarcadores Tumorais , Estudos de Coortes , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Mutação , Prognóstico , Análise de Sobrevida
14.
Nat Commun ; 10(1): 1262, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890717

RESUMO

Lys-27-Met mutations in histone 3 genes (H3K27M) characterize a subgroup of deadly gliomas and decrease genome-wide H3K27 trimethylation. Here we use primary H3K27M tumor lines and isogenic CRISPR-edited controls to assess H3K27M effects in vitro and in vivo. We find that whereas H3K27me3 and H3K27me2 are normally deposited by PRC2 across broad regions, their deposition is severely reduced in H3.3K27M cells. H3K27me3 is unable to spread from large unmethylated CpG islands, while H3K27me2 can be deposited outside these PRC2 high-affinity sites but to levels corresponding to H3K27me3 deposition in wild-type cells. Our findings indicate that PRC2 recruitment and propagation on chromatin are seemingly unaffected by K27M, which mostly impairs spread of the repressive marks it catalyzes, especially H3K27me3. Genome-wide loss of H3K27me3 and me2 deposition has limited transcriptomic consequences, preferentially affecting lowly-expressed genes regulating neurogenesis. Removal of H3K27M restores H3K27me2/me3 spread, impairs cell proliferation, and completely abolishes their capacity to form tumors in mice.


Assuntos
Neoplasias Encefálicas/genética , Cromatina/metabolismo , Glioblastoma/genética , Histonas/genética , Complexo Repressor Polycomb 2/metabolismo , Adolescente , Idoso , Animais , Neoplasias Encefálicas/patologia , Sistemas CRISPR-Cas , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética , Feminino , Edição de Genes/métodos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Células HEK293 , Código das Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Masculino , Metionina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Neurogênese/genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Genet ; 49(2): 180-185, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28067913

RESUMO

Human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs) are deadly and common cancers. Recent genomic studies implicate multiple genetic pathways, including cell signaling, cell cycle and immune evasion, in their development. Here we analyze public data sets and uncover a previously unappreciated role of epigenome deregulation in the genesis of 13% of HPV-negative HNSCCs. Specifically, we identify novel recurrent mutations encoding p.Lys36Met (K36M) alterations in multiple H3 histone genes. histones. We further validate the presence of these alterations in multiple independent HNSCC data sets and show that, along with previously described NSD1 mutations, they correspond to a specific DNA methylation cluster. The K36M substitution and NSD1 defects converge on altering methylation of histone H3 at K36 (H3K36), subsequently blocking cellular differentiation and promoting oncogenesis. Our data further indicate limited redundancy for NSD family members in HPV-negative HNSCCs and suggest a potential role for impaired H3K36 methylation in their development. Further investigation of drugs targeting chromatin regulators is warranted in HPV-negative HNSCCs driven by aberrant H3K36 methylation.


Assuntos
Carcinoma de Células Escamosas/genética , Metilação de DNA/genética , Neoplasias de Cabeça e Pescoço/genética , Histonas/genética , Carcinogênese/genética , Diferenciação Celular/genética , Epigênese Genética/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Proteínas Nucleares/genética , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço
16.
Nat Genet ; 49(5): 780-788, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28394352

RESUMO

Spatial heterogeneity of transcriptional and genetic markers between physically isolated biopsies of a single tumor poses major barriers to the identification of biomarkers and the development of targeted therapies that will be effective against the entire tumor. We analyzed the spatial heterogeneity of multiregional biopsies from 35 patients, using a combination of transcriptomic and genomic profiles. Medulloblastomas (MBs), but not high-grade gliomas (HGGs), demonstrated spatially homogeneous transcriptomes, which allowed for accurate subgrouping of tumors from a single biopsy. Conversely, somatic mutations that affect genes suitable for targeted therapeutics demonstrated high levels of spatial heterogeneity in MB, malignant glioma, and renal cell carcinoma (RCC). Actionable targets found in a single MB biopsy were seldom clonal across the entire tumor, which brings the efficacy of monotherapies against a single target into question. Clinical trials of targeted therapies for MB should first ensure the spatially ubiquitous nature of the target mutation.


Assuntos
Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/genética , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Cerebelares/patologia , Criança , Pré-Escolar , Análise por Conglomerados , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Estudo de Associação Genômica Ampla , Humanos , Mutação INDEL , Masculino , Meduloblastoma/patologia , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Nat Commun ; 7: 11185, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048880

RESUMO

Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M--including H3.2K27M--mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (TP53/PPM1D) or specific growth factor pathways (ACVR1/PIK3R1). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.


Assuntos
Neoplasias do Tronco Encefálico/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Histonas/genética , Mutação , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Autopsia , Mapeamento Encefálico , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Cérebro/metabolismo , Cérebro/patologia , Criança , Classe Ia de Fosfatidilinositol 3-Quinase , Evolução Clonal , Glioma/metabolismo , Glioma/patologia , Histonas/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C , Transdução de Sinais , Técnicas Estereotáxicas , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Science ; 352(6287): 844-9, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27174990

RESUMO

Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36-to-methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas in which novel K36M/I mutations in H3.1 are identified.


Assuntos
Neoplasias Ósseas/genética , Carcinogênese/genética , Condroblastoma/genética , Histonas/genética , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Sarcoma/genética , Animais , Neoplasias Ósseas/patologia , Carcinogênese/patologia , Pré-Escolar , Condroblastoma/patologia , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Lisina/genética , Células-Tronco Mesenquimais/metabolismo , Metionina/genética , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Mutação , Mutação de Sentido Incorreto , Células-Tronco Neoplásicas/metabolismo , Nucleossomos/genética , Complexo Repressor Polycomb 1/metabolismo , Sarcoma/patologia
19.
Nat Genet ; 46(1): 39-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316981

RESUMO

Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.


Assuntos
Neoplasias Encefálicas/genética , Cromossomos Humanos Par 19 , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Neoplasias Embrionárias de Células Germinativas/genética , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Humanos , Masculino , Isoformas de Proteínas , Proteína p130 Retinoblastoma-Like/genética , Ensaios Antitumorais Modelo de Xenoenxerto , DNA Metiltransferase 3B
20.
Nat Genet ; 46(5): 462-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705250

RESUMO

Pediatric midline high-grade astrocytomas (mHGAs) are incurable with few treatment targets identified. Most tumors harbor mutations encoding p.Lys27Met in histone H3 variants. In 40 treatment-naive mHGAs, 39 analyzed by whole-exome sequencing, we find additional somatic mutations specific to tumor location. Gain-of-function mutations in ACVR1 occur in tumors of the pons in conjunction with histone H3.1 p.Lys27Met substitution, whereas FGFR1 mutations or fusions occur in thalamic tumors associated with histone H3.3 p.Lys27Met substitution. Hyperactivation of the bone morphogenetic protein (BMP)-ACVR1 developmental pathway in mHGAs harboring ACVR1 mutations led to increased levels of phosphorylated SMAD1, SMAD5 and SMAD8 and upregulation of BMP downstream early-response genes in tumor cells. Global DNA methylation profiles were significantly associated with the p.Lys27Met alteration, regardless of the mutant histone H3 variant and irrespective of tumor location, supporting the role of this substitution in driving the epigenetic phenotype. This work considerably expands the number of potential treatment targets and further justifies pretreatment biopsy in pediatric mHGA as a means to orient therapeutic efforts in this disease.


Assuntos
Receptores de Ativinas Tipo I/genética , Astrocitoma/genética , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Mutação/genética , Animais , Sequência de Bases , Proteínas Morfogenéticas Ósseas/metabolismo , Criança , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Análise de Sequência de DNA , Proteínas Smad/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA