Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 21(11): 5399-5407, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33980349

RESUMO

For the development of drugs that treat SARS-CoV-2, the fastest way is to find potential molecules from drugs already on the market. Unfortunately, there is currently no specific drug or treatment for COVID-19. Among all structural proteins in SARS-CoV, the spike protein is the main antigenic component responsible for inducing host immune responses, neutralizing antibodies, and/or protecting immunity against virus infection. Molecular docking is a technique used to predict whether a molecule will bind to another. It is usually a protein to another or a protein to a binding compound. Natural products are potential binders in several studies involving coronavirus. The structure of the ligand plays a fundamental role in its biological properties. The nuclear magnetic resonance technique is one of the most powerful tools for the structural determination of ligands from the origin of natural products. Nowadays, molecular modeling is an important accessory tool to experimentally got nuclear magnetic resonance data. In the present work, molecular docking studies aimed is to investigate the limiting affinities of trans-dehydrocrotonin molecule and to identify the main amino acid residues that could play a fundamental role in their mechanism of action of the SARS-CoV spike protein. Another aim of this work is all about to evaluate 10 hybrid functionalities, along with three base pairs using computational programs to discover which ones are more reliable with the experimental result the best computational method to study organic compounds. We compared the results between the mean absolute deviation (MAD) and root-mean-square deviation (RMSD) of the molecules, and the smallest number between them was the best result. The positions assumed by the ligands in the active site of the spike glycoprotein allow assuming associations with different local amino acids.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais , Teoria da Densidade Funcional , Diterpenos Clerodânicos , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Peptídeo Hidrolases
2.
J Nanosci Nanotechnol ; 21(11): 5499-5509, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33980360

RESUMO

Hormones are a dangerous group of molecules that can cause harm to humans. This study based on classical molecular dynamics proposes the nanofiltration of wastewater contaminated by hormones from a computer simulation study, in which the water and the hormone were filtered in two single-walled nanotube compositions. The calculations were carried out by changing the intensities of the electric field that acted as a force exerting pressure on the filtration along the nanotube, in the simulation time of 100 ps. The hormones studied were estrone, estradiol, estriol, progesterone, ethinylestradiol, diethylbestrol, and levonorgestrel in carbon nanotubes (CNTs) and boron nitride (BNNTs). The most efficient nanofiltrations were for fields with low intensities in the order of 10-8 au and 10-7 au. The studied nanotubes can be used in membranes for nanofiltration in water treatment plants due to the evanescent field potential caused by the action of the electric field inside. Our data showed that the action of EF in conjunction with the van der Walls forces of the nanotubes is sufficient to generate the attractive potential. Evaluating the transport of water molecules in CNTs and BNNTs, under the influence of the electric field, a sequence of simulations with the same boundary conditions was carried out, seeking to know the percentage of water molecules filtered in the nanotubes.


Assuntos
Nanotubos de Carbono , Nanotubos , Compostos de Boro , Hormônios , Humanos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA