Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Nephrol ; 23(1): 1, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979951

RESUMO

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) cover a spectrum of structural malformations that result from aberrant morphogenesis of kidney and urinary tract. It is the most prevalent cause of kidney failure in children. Hence, it is important from a clinical perspective to unravel the molecular etiology of kidney and urinary tract malformations. Causal variants in genes that direct various stages of development of kidney and urinary tract in fetal life have been identified in 5-20% of CAKUT patients from Western countries. Recent advances in next generation sequencing technology and decreasing cost offer the opportunity to characterize the genetic profile of CAKUT in Indian population and facilitate integration of genetic diagnostics in care of children with CAKUT. METHODS: Customized targeted panel sequencing was performed to identify pathogenic variants in 31 genes known to cause human CAKUT in 69 south Indian children with CAKUT. The NGS data was filtered using standardized pipeline and the variants were classified using ACMG criteria. Genotype and phenotype correlations were performed. RESULTS: The cohort consisted of children mostly with posterior urethral valve (PUV) (39.1%), vesico-ureteric reflux (VUR) (33.3%) and multi-cystic dysplastic kidney (MCDK) (7.2%). No pathogenic or likely pathogenic variants were identified in the study. Most of our variants (n = 39, 60%) were variants of unknown significance with 25.6% (10/39) of them were identified as potentially damaging but were novel variants. CONCLUSIONS: The present study did not identify any disease-causing monogenic variants in the cohort. The absence of genetic cause may be due to limitations of panel-based testing and also due to higher proportion of children with abnormalities in lower urinary tract than hypodysplasia of kidneys. Clinical, larger targeted panel or whole exome sequencing may be a better method to characterize the genetic profile of Indians patients with CAKUT.


Assuntos
Anormalidades Múltiplas/genética , Rim/anormalidades , Mutação , Sistema Urinário/anormalidades , Criança , Pré-Escolar , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Masculino , Fenótipo , Estudos Prospectivos
2.
BMC Med Genet ; 19(1): 200, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458709

RESUMO

BACKGROUND: Steroid resistant nephrotic syndrome (SRNS) is a genetically heterogeneous disease with significant phenotypic variability. More than 53 podocyte-expressed genes are implicated in SRNS which complicates the routine use of genetic screening in the clinic. Next generation sequencing technology (NGS) allows rapid screening of multiple genes in large number of patients in a cost-effective manner. METHODS: We developed a targeted panel of 17 genes to determine relative frequency of mutations in south Indian ethnicity and feasibility of using the assay in a clinical setting. Twenty-five children with SRNS and 3 healthy individuals were screened. RESULTS: In this study, novel variants including 1 pathogenic variant (2 patients) and 3 likely pathogenic variants (3 patients) were identified. In addition, 2 novel variants of unknown significance (VUS) in 2 patients (8% of total patients) were also identified. CONCLUSIONS: The results show that genetic screening in SRNS using NGS is feasible in a clinical setting. However the panel needs to be screened in a larger cohort of children with SRNS in order to assess the utility of the customised targeted panel in Indian children with SRNS. Determining the prevalence of variants in Indian population and improvising the bioinformatics-based filtering strategy for a more accurate differentiation of pathogenic variants from those that are benign among the VUS will help in improving medical and genetic counselling in SRNS.


Assuntos
Testes Genéticos/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Mutação , Síndrome Nefrótica/congênito , Fosfoinositídeo Fosfolipase C/genética , Proteínas WT1/genética , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Resistência a Medicamentos/genética , Feminino , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Lactente , Masculino , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Fenótipo , Índice de Gravidade de Doença , Esteroides/uso terapêutico
3.
BMC Med Genet ; 18(1): 3, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28068926

RESUMO

BACKGROUND: Mutations in Wilm's tumor 1 (WT1) gene is one of the commonly reported genetic mutations in children with steroid resistant nephrotic syndrome (SRNS). We report the results of direct sequencing of exons 8 and 9 of WT1 gene in 100 children with SRNS from a single centre. We standardized and validated High Resolution Melt (HRM) as a rapid and cost effective screening step to identify individuals with normal sequence and distinguish it from those with a potential mutation. Since only mutation positive samples identified by HRM will be further processed for sequencing it will help in reducing the sequencing burden and speed up the screening process. METHODS: One hundred SRNS children were screened for WT1 mutations in Exon 8 and 9 using Sanger sequencing. HRM assay was standardized and validated by performing analysis for exon 8 and 9 on 3 healthy control and 5 abnormal variants created by site directed mutagenesis and verified by sequencing. To further test the clinical applicability of the assay, we screened additional 91 samples for HRM testing and performed a blinded assessment. RESULTS: WT1 mutations were not observed in the cohort of children with SRNS. The results of HRM analysis were concordant with the sequencing results. CONCLUSION: The WT1 gene mutations were not observed in the SRNS cohort indicating it has a low prevalence. We propose applying this simple, rapid and cost effective assay using HRM technique as the first step for screening the WT1 gene hot spot region in a clinical setting.


Assuntos
Testes Genéticos/métodos , Síndrome Nefrótica/genética , Análise de Sequência de DNA/métodos , Proteínas WT1/genética , Criança , Pré-Escolar , Resistência a Medicamentos , Éxons , Feminino , Testes Genéticos/normas , Humanos , Lactente , Masculino , Mutação , Análise de Sequência de DNA/normas , Esteroides/uso terapêutico
4.
Clin Exp Pediatr ; 64(7): 355-363, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33147911

RESUMO

BACKGROUND: Nephrotic syndrome (NS) is a common renal disorder in children attributed to podocyte injury. However, children with the same diagnosis have markedly variable treatment responses, clinical courses, and outcomes, suggesting molecular heterogeneity. PURPOSE: This study aimed to explore the molecular responses of podocytes to nephrotic plasma to identify specific genes and signaling pathways differentiating various clinical NS groups as well as biological processes that drive injury in normal podocytes. METHODS: Transcriptome profiles from immortalized human podocyte cell line exposed to the plasma of 8 subjects (steroidsensitive nephrotic syndrome [SSNS], n=4; steroid-resistant nephrotic syndrome [SRNS], n=2; and healthy adult individuals [control], n=2) were generated using microarray analysis. RESULTS: Unsupervised hierarchical clustering of global gene expression data was broadly correlated with the clinical classification of NS. Differential gene expression (DGE) analysis of diseased groups (SSNS or SRNS) versus healthy controls identified 105 genes (58 up-regulated, 47 down-regulated) in SSNS and 139 genes (78 up-regulated, 61 down-regulated) in SRNS with 55 common to SSNS and SRNS, while the rest were unique (50 in SSNS, 84 genes in SRNS). Pathway analysis of the significant (P≤0.05, -1≤ log2 FC ≥1) differentially expressed genes identified the transforming growth factor-ß and Janus kinase-signal transducer and activator of transcription pathways to be involved in both SSNS and SRNS. DGE analysis of SSNS versus SRNS identified 2,350 genes with values of P≤0.05, and a heatmap of corresponding expression values of these genes in each subject showed clear differences in SSNS and SRNS. CONCLUSION: Our study observations indicate that, although podocyte injury follows similar pathways in different clinical subgroups, the pathways are modulated differently as evidenced by the heatmap. Such transcriptome profiling with a larger cohort can stratify patients into intrinsic subtypes and provide insight into the molecular mechanisms of podocyte injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA