Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Immunol ; 196(12): 5089-100, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27194784

RESUMO

Milk fat globule epidermal growth factor-factor 8 (MFG-E8) is a peripheral glycoprotein that acts as a bridging molecule between the macrophage and apoptotic cells, thus executing a pivotal role in the scavenging of apoptotic cells from affected tissue. We have previously reported that apoptotic cell clearance activity or efferocytosis is compromised in diabetic wound macrophages. In this work, we test the hypothesis that MFG-E8 helps resolve inflammation, supports angiogenesis, and accelerates wound closure. MFG-E8(-/-) mice displayed impaired efferocytosis associated with exaggerated inflammatory response, poor angiogenesis, and wound closure. Wound macrophage-derived MFG-E8 was recognized as a critical driver of wound angiogenesis. Transplantation of MFG-E8(-/-) bone marrow to MFG-E8(+/+) mice resulted in impaired wound closure and compromised wound vascularization. In contrast, MFG-E8(-/-) mice that received wild-type bone marrow showed improved wound closure and improved wound vascularization. Hyperglycemia and exposure to advanced glycated end products inactivated MFG-E8, recognizing a key mechanism that complicates diabetic wound healing. Diabetic db/db mice suffered from impaired efferocytosis accompanied with persistent inflammation and slow wound closure. Topical recombinant MFG-E8 induced resolution of wound inflammation, improvements in angiogenesis, and acceleration of closure, upholding the potential of MFG-E8-directed therapeutics in diabetic wound care.


Assuntos
Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Diabetes Mellitus/fisiopatologia , Inflamação/tratamento farmacológico , Proteínas do Leite/imunologia , Proteínas do Leite/metabolismo , Cicatrização , Proteínas Angiogênicas/imunologia , Proteínas Angiogênicas/isolamento & purificação , Proteínas Angiogênicas/metabolismo , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/farmacologia , Apoptose , Diabetes Mellitus/imunologia , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Leite/genética , Proteínas do Leite/farmacologia , Fagocitose
2.
J Nat Prod ; 80(9): 2515-2523, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28876059

RESUMO

The use of natural products as adjuvants has emerged as a promising approach for the development of effective vaccine formulations. Pentalinonsterol (PEN) is a recently isolated compound from the roots of Pentalinon andrieuxii and has been shown to possess antileishmanial activity against Leishmania spp. The objective of this study was to examine the immunomodulatory properties of PEN and evaluate its potential as an adjuvant. Macrophages and bone-marrow-derived dendritic cells (BMDCs) were stimulated with PEN and tested for gene expression, cytokine production, and their ability to activate T cells in vitro. PEN was also evaluated for its ability to generate antigen-specific Th1 and Th2 responses in vivo, following ovalbumin (OVA) immunization using PEN as an adjuvant. The results obtained demonstrate that PEN enhances the expression of NF-κB and AP1 transcription factors, promotes gene expression of Tnfα, Il6, Nos2, and Arg1, and upregulates MHCII, CD80, and CD86 in macrophages. PEN also enhanced IL-12 production in BMDCs and promoted BMDC-mediated production of IFN-γ by T cells. Further, mice immunized with OVA and PEN showed enhanced antigen-specific Th1 and Th2 cytokines in their splenocytes and lymph node cells, as well as increased levels of IgG1 and IgG2 in their sera. Taken together, this study demonstrates that PEN is a potent immunomodulatory compound and potentially can be used as an adjuvant for vaccine development against infectious diseases.


Assuntos
Adjuvantes Imunológicos/farmacologia , Apocynaceae/química , Citocinas/imunologia , Interleucina-12/imunologia , NF-kappa B/imunologia , Ovalbumina/imunologia , Esteróis/isolamento & purificação , Esteróis/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Adjuvantes Imunológicos/química , Animais , Citocinas/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , NF-kappa B/metabolismo , Ovalbumina/química , Esteróis/química , Linfócitos T , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
3.
Am J Respir Crit Care Med ; 189(11): 1402-15, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24779708

RESUMO

RATIONALE: Lysocardiolipin acyltransferase (LYCAT), a cardiolipin-remodeling enzyme regulating the 18:2 linoleic acid pattern of mammalian mitochondrial cardiolipin, is necessary for maintaining normal mitochondrial function and vascular development. We hypothesized that modulation of LYCAT expression in lung epithelium regulates development of pulmonary fibrosis. OBJECTIVES: To define a role for LYCAT in human and murine models of pulmonary fibrosis. METHODS: We analyzed the correlation of LYCAT expression in peripheral blood mononuclear cells (PBMCs) with the outcomes of pulmonary functions and overall survival, and used the murine models to establish the role of LYCAT in fibrogenesis. We studied the LYCAT action on cardiolipin remodeling, mitochondrial reactive oxygen species generation, and apoptosis of alveolar epithelial cells under bleomycin challenge. MEASUREMENTS AND MAIN RESULTS: LYCAT expression was significantly altered in PBMCs and lung tissues from patients with idiopathic pulmonary fibrosis (IPF), which was confirmed in two preclinical murine models of IPF, bleomycin- and radiation-induced pulmonary fibrosis. LYCAT mRNA expression in PBMCs directly and significantly correlated with carbon monoxide diffusion capacity, pulmonary function outcomes, and overall survival. In both bleomycin- and radiation-induced pulmonary fibrosis murine models, hLYCAT overexpression reduced several indices of lung fibrosis, whereas down-regulation of native LYCAT expression by siRNA accentuated fibrogenesis. In vitro studies demonstrated that LYCAT modulated bleomycin-induced cardiolipin remodeling, mitochondrial membrane potential, reactive oxygen species generation, and apoptosis of alveolar epithelial cells, potential mechanisms of LYCAT-mediated lung protection. CONCLUSIONS: This study is the first to identify modulation of LYCAT expression in fibrotic lungs and offers a novel therapeutic approach for ameliorating lung inflammation and pulmonary fibrosis.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Aciltransferases/genética , Mitocôndrias/genética , Fibrose Pulmonar/diagnóstico , Fibrose Pulmonar/genética , Animais , Biomarcadores/metabolismo , Cardiolipinas/genética , Estudos de Coortes , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Hibridização In Situ , Leucócitos Mononucleares/metabolismo , Camundongos , Mitocôndrias/metabolismo , Valor Preditivo dos Testes , Fibrose Pulmonar/enzimologia , RNA Mensageiro/metabolismo , Sensibilidade e Especificidade , Índice de Gravidade de Doença
4.
Mol Cell Biochem ; 386(1-2): 233-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24307101

RESUMO

Diabetic cardiomyopathy and heart failure have been recognized as the leading causes of mortality among diabetics. Diabetic cardiomyopathy has been characterized primarily by the manifestation of left ventricular dysfunction that is independent of coronary artery disease and hypertension among the patients affected by diabetes mellitus. A complex array of contributing factors including the hypertrophy of left ventricle, alterations of metabolism, microvascular pathology, insulin resistance, fibrosis, apoptotic cell death, and oxidative stress have been implicated in the pathogenesis of diabetic cardiomyopathy. Nevertheless, the exact mechanisms underlying the pathogenesis of diabetic cardiomyopathy are yet to be established. The critical involvement of multifarious factors including the vascular endothelial dysfunction, microangiopathy, reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction has been identified in the mechanism of pathogenesis of diabetic cardiomyopathy. Although it is difficult to establish how each factor contributes to disease, the involvement of ROS and mitochondrial dysfunction are emerging as front-runners in the mechanism of pathogenesis of diabetic cardiomyopathy. This review highlights the role of vascular endothelial dysfunction, ROS, oxidative stress, and mitochondriopathy in the pathogenesis of diabetic cardiomyopathy. Furthermore, the review emphasizes that the puzzle has to be solved to firmly establish the mitochondrial and/or ROS mechanism(s) by identifying their most critical molecular players involved at both spatial and temporal levels in diabetic cardiomyopathy as targets for specific and effective pharmacological/therapeutic interventions.


Assuntos
Cardiomiopatias Diabéticas/etiologia , Endotélio Vascular/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Humanos
5.
J Immunol ; 189(5): 2563-73, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22844123

RESUMO

Monocytes and macrophages (m) are plastic cells whose functions are governed by microenvironmental cues. Wound fluid bathing the wound tissue reflects the wound microenvironment. Current literature on wound inflammation is primarily based on the study of blood monocyte-derived macrophages, cells that have never been exposed to the wound microenvironment. We sought to compare pair-matched monocyte-derived macrophages with m isolated from chronic wounds of patients. Oncostatin M (OSM) was differentially overexpressed in pair-matched wound m. Both PGE2 and its metabolite 13,14-dihydro-15-keto-PGE2 (PGE-M) were abundant in wound fluid and induced OSM in wound-site m. Consistently, induction of OSM mRNA was observed in m isolated from PGE2-enriched polyvinyl alcohol sponges implanted in murine wounds. Treatment of human THP-1 cell-derived m with PGE2 or PGE-M caused dose-dependent induction of OSM. Characterization of the signal transduction pathways demonstrated the involvement of EP4 receptor and cAMP signaling. In human m, PGE2 phosphorylated Axl, a receptor tyrosine kinase (RTK). Axl phosphorylation was also induced by a cAMP analogue demonstrating interplay between the cAMP and RTK pathways. PGE2-dependent Axl phosphorylation led to AP-1 transactivation, which is directly implicated in inducible expression of OSM. Treatment of human m or mice excisional wounds with recombinant OSM resulted in an anti-inflammatory response as manifested by attenuated expression of endotoxin-induced TNF-α and IL-1ß. OSM treatment also improved wound closure during the early inflammatory phase of healing. In summary, this work recognizes PGE2 in the wound fluid as a potent inducer of m OSM, a cytokine with an anti-inflammatory role in cutaneous wound healing.


Assuntos
Dinoprostona/fisiologia , Macrófagos/imunologia , Oncostatina M/biossíntese , Proteínas Proto-Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais/imunologia , Infecção dos Ferimentos/imunologia , Adulto , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Linhagem Celular , Doença Crônica , Modelos Animais de Doenças , Feminino , Humanos , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Oncostatina M/uso terapêutico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/uso terapêutico , Reprodutibilidade dos Testes , Infecção dos Ferimentos/enzimologia , Infecção dos Ferimentos/patologia , Receptor Tirosina Quinase Axl
6.
Artigo em Inglês | MEDLINE | ID: mdl-38529321

RESUMO

Thioredoxin-interacting protein (TXNIP) plays a critical role in regulation of cellular redox reactions and inflammatory responses by interacting with thioredoxin (TRX) or the inflammasome. The role of TXNIP in lung fibrosis and molecular regulation of its stability have not been well studied. Therefore, here we investigated the molecular regulation of TXNIP stability and its role in TGF-ß1-mediated signaling in lung fibroblasts. TXNIP protein levels were significantly decreased in lung tissues from bleomycin-challenged mice. Overexpression of TXNIP attenuated transforming growth factor-ß1 (TGF-ß1)-induced phosphorylation of Smad2/3 and fibronectin expression in lung fibroblasts, suggesting that decrease in TXNIP may contribute to the pathogenesis of lung fibrosis. Further, we observed that TGF-ß1 lowered TXNIP protein levels, while TXNIP mRNA levels were unaltered by TGF-ß1 exposure. TGF-ß1 induced TXNIP degradation via the ubiquitin-proteasome system. A serine residue mutant (TNXIP-S308A) was resistant to TGF-ß1-induced degradation. Furthermore, downregulationof ubiquitin-specific protease-13 (USP13) promoted the TGF-ß1-induced TXNIP ubiquitination and degradation. Mechanistic studies revealed that USP13 targeted and deubiquitinated TXNIP. The results of this study revealed that the decrease of TXNIP in lungs apparently contributes to the pathogenesis of pulmonary fibrosis and that USP13 can target TXNP for deubiquitination and regulate its stability.

7.
Mutat Res ; 751(2): 130-8, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23313746

RESUMO

Calcium is an important second messenger in signal transduction pathways. The role of Ca(2+) signalling in Al-induced DNA damage, cell death, and adaptive response to genotoxic stress caused by ethyl methanesulfonate (EMS) or methylmercuric chloride (MMCl) in the root cells of Allium cepa was investigated in the current study. Root cells in planta were treated with Al(3+) (800µM of AlCl(3)) for 3h without or with 2h pre-treatment with the Ca(2+) chelator (EGTA) or Ca(2+) channel blockers (lanthanum chloride, verapamil) or CaM/CDPK antagonist (W7). In addition, root cells in planta were conditioned by treatment with Al(3+) (5 or 10µM of AlCl(3)) for 2h followed by the genotoxic challenge with MMCl (1.25µM) or EMS (2.5 or 5mM) for 3h without or with the pre-treatment of the chosen Ca(2+) chelator/channel blockers/antagonist. Following the treatments, cell death and DNA damage were investigated in the root cells by comet assay. Furthermore, genotoxicity in the root meristems was determined after 18-30h of recovery. These results revealed that Al(3+) (800µM) significantly induced DNA damage and cell death in the root cells of A. cepa. On the other hand, conditioning of the root cells with Al(3+) at low concentrations (5 or 10µM) offered adaptive response leading to the protection against genotoxic stress induced by MMCl and EMS. Pre-treatment of root cells with the Ca(2+) chelator/channel blockers/antagonist not only alleviated Al(3+)-induced DNA damage and cell death induced but also blocked the Al(3+)-mediated adaptive response to genotoxic stress induced by MMCl and EMS. For the first time, the results of the present study highlighted the role of Ca(2+) signalling underlying the biphasic mode of action of Al(3+) that induced DNA damage and cell death at high doses and offered adaptation to genotoxic response in plants at low doses.


Assuntos
Adaptação Fisiológica , Alumínio/toxicidade , Bloqueadores dos Canais de Cálcio/farmacologia , Dano ao DNA/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Metanossulfonato de Etila/toxicidade , Compostos de Metilmercúrio/toxicidade , Cebolas
8.
Indian J Biochem Biophys ; 50(5): 387-401, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24772960

RESUMO

The purpose of this study was to elucidate the mechanism of the airborne poultry dust (particulate matter, PM)-induced respiratory tract inflammation, a common symptom in agricultural respiratory diseases. The study was based on the hypothesis that poultry PM would induce the release of inflammatory cytokine interleukin-8 (IL-8) by respiratory epithelial cells under the upstream regulation by cytosolic phospholipase A2 (cPLA2) activation and subsequent formation of cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites (eicosanoids). Human lung epithelial cells (A549) in culture were treated with the poultry PM (0.1-1.0 mg) for different lengths of time, following which PLA2 activity, release of eicosanoids and secretion of IL-8 in cells were determined. Poultry PM (1.0 mg/ml) caused a significant activation of PLA2 in a time-dependent manner (15-60 min), which was significantly attenuated by the calcium-chelating agents, cPLA2-specific inhibitor (AACOCF3) and antioxidant (vitamin C) in A549 cells. Poultry PM also significantly induced the release of COX- and LOX-catalyzed eicosanoids (prostaglandins, thromboxane A2 and leukotrienes B4 and C4) and upstream activation of AA LOX in the cells. Poultry PM also significantly induced release of IL-8 by the cells in a dose- and time-dependent manner, which was significantly attenuated by the calcium chelating agents, antioxidants and COX- and LOX-specific inhibitors. The current study for the first time revealed that the poultry PM-induced IL-8 release from the respiratory epithelial cells was regulated upstream by reactive oxygen species, cPLA2-, COX- and LOX-derived eicosanoid lipid signal mediators.


Assuntos
Agricultura , Citocinas/metabolismo , Eicosanoides/metabolismo , Material Particulado/farmacologia , Mucosa Respiratória/citologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Ácido Araquidônico/metabolismo , Biocatálise , Linhagem Celular , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-8/metabolismo , Lipoxigenases/metabolismo , Material Particulado/química , Fosfolipases A2 Citosólicas/antagonistas & inibidores , Fosfolipases A2 Citosólicas/metabolismo , Aves Domésticas , Prostaglandina-Endoperóxido Sintases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/metabolismo , Solventes/química , Fatores de Tempo
9.
Biomedicines ; 11(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37760892

RESUMO

The excess microvascular endothelial permeability is a hallmark of acute inflammatory diseases. Maintenance of microvascular integrity is critical to preventing leakage of vascular components into the surrounding tissues. Sphingosine-1-phosphate (S1P) is an active lysophospholipid that enhances the endothelial cell (EC) barrier via activation of its receptor S1PR1. Here, we delineate the effect of non-lethal doses of RSL3, an inhibitor of glutathione peroxidase 4 (GPX4), on EC barrier function. Low doses of RSL3 (50-100 nM) attenuated S1P-induced human lung microvascular barrier enhancement and the phosphorylation of AKT. To investigate the molecular mechanisms by which RSL3 attenuates S1P's effect, we examined the S1PR1 levels. RSL3 treatment reduced S1PR1 levels in 1 h, whereas the effect was attenuated by the proteasome and lysosome inhibitors as well as a lipid raft inhibitor. Immunofluorescence staining showed that RSL3 induced S1PR1 internalization from the plasma membrane into the cytoplasm. Furthermore, we found that RSL3 (100 and 200 nM) increased EC barrier permeability and cytoskeletal rearrangement without altering cell viability. Taken together, our data delineates that non-lethal doses of RSL3 impair EC barrier function via two mechanisms. RSL3 attenuates S1P1-induced EC barrier enhancement and disrupts EC barrier integrity through the generation of 4-hydroxynonena (4HNE). All these effects are independent of ferroptosis.

10.
Cells ; 12(5)2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36899883

RESUMO

Cardiac fibroblasts (CFs) maintain the fibrous extracellular matrix (ECM) that supports proper cardiac function. Cardiac injury induces a transition in the activity of CFs to promote cardiac fibrosis. CFs play a critical role in sensing local injury signals and coordinating the organ level response through paracrine communication to distal cells. However, the mechanisms by which CFs engage cell-cell communication networks in response to stress remain unknown. We tested a role for the action-associated cytoskeletal protein ßIV-spectrin in regulating CF paracrine signaling. Conditioned culture media (CCM) was collected from WT and ßIV-spectrin deficient (qv4J) CFs. WT CFs treated with qv4J CCM showed increased proliferation and collagen gel compaction compared to control. Consistent with the functional measurements, qv4J CCM contained higher levels of pro-inflammatory and pro-fibrotic cytokines and increased concentration of small extracellular vesicles (30-150 nm diameter, exosomes). Treatment of WT CFs with exosomes isolated from qv4J CCM induced a similar phenotypic change as that observed with complete CCM. Treatment of qv4J CFs with an inhibitor of the ßIV-spectrin-associated transcription factor, STAT3, decreased the levels of both cytokines and exosomes in conditioned media. This study expands the role of the ßIV-spectrin/STAT3 complex in stress-induced regulation of CF paracrine signaling.


Assuntos
Miocárdio , Espectrina , Humanos , Comunicação Celular , Citocinas/metabolismo , Fibroblastos/metabolismo , Fibrose , Espectrina/metabolismo , Miocárdio/metabolismo
11.
Cell Biochem Biophys ; 81(2): 205-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36820994

RESUMO

Nordihydroguaiaretic acid (NDGA), a dicatechol and phytochemical polyphenolic antioxidant and an established inhibitor of human arachidonic acid (AA) 5-lipoxygenase (LOX) and 15-LOX, is widely used to ascertain the role of LOXs in vascular endothelial cell (EC) function. As the modulatory effect of NDGA on phospholipase D (PLD), an important lipid signaling enzyme in ECs, thus far has not been reported, here we have investigated the modulation of PLD activity and its regulation by NDGA in the bovine pulmonary artery ECs (BPAECs). NDGA induced the activation of PLD (phosphatidic acid formation) in cells in a dose- and time-dependent fashion that was significantly attenuated by iron chelator and antioxidants. NDGA induced the formation of reactive oxygen species (ROS) in cells in a dose- and time-dependent manner as evidenced from fluorescence microscopy and fluorimetry of ROS and electron paramagnetic resonance spectroscopy of oxygen radicals. Also, NDGA caused a dose-dependent loss of intracellular glutathione (GSH) in BPAECs. Protein tyrosine kinase (PTyK)-specific inhibitors significantly attenuated NDGA-induced PLD activation in BPAECs. NDGA also induced a dose- and time-dependent phosphorylation of tyrosine in proteins in cells. NDGA caused in situ translocation and relocalization of both PLD1 and PLD2 isoforms, in a time-dependent fashion. Cyclooxygenase (COX) inhibitors were ineffective in attenuating NDGA-induced PLD activation in BPAECs, thus ruling out the activation of COXs by NDGA. NDGA inhibited the AA-LOX activity and leukotriene C4 (LTC4) formation in cells. On the other hand, the 5-LOX-specific inhibitors, 5, 8, 11, 14-eicosatetraynoic acid and kaempferol, were ineffective in activating PLD in BPAECs. Antioxidants and PTyK-specific inhibitors effectively attenuated NDGA cytotoxicity in BPAECs. The PLD-specific inhibitor, 5-fluoro-2-indolyl deschlorohalopemide (FIPI), significantly attenuated and protected against the NDGA-induced PLD activation and cytotoxicity in BPAECs. For the first time, these results demonstrated that NDGA, the classic phytochemical polyphenolic antioxidant and LOX inhibitor, activated PLD causing cytotoxicity in ECs through upstream oxidant signaling and protein tyrosine phosphorylation.


Assuntos
Antioxidantes , Fosfolipase D , Animais , Bovinos , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fosforilação , Masoprocol/farmacologia , Masoprocol/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxidantes , Células Endoteliais/metabolismo , Fosfolipase D/metabolismo , Fosfolipase D/farmacologia , Inibidores Enzimáticos/metabolismo , Pulmão/metabolismo , Tirosina/farmacologia , Tirosina/metabolismo
12.
Toxicol Mech Methods ; 22(5): 383-96, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22409285

RESUMO

Lung vascular alterations and pulmonary hypertension associated with oxidative stress have been reported to be involved in idiopathic lung fibrosis (ILF). Therefore, here, we hypothesize that the widely used lung fibrosis inducer, bleomycin, would cause cytoskeletal rearrangement through thiol-redox alterations in the cultured lung vascular endothelial cell (EC) monolayers. We exposed the monolayers of primary bovine pulmonary artery ECs to bleomycin (10 µg) and studied the cytotoxicity, cytoskeletal rearrangements, and the macromolecule (fluorescein isothiocyanate-dextran, 70,000 mol. wt.) paracellular transport in the absence and presence of two thiol-redox protectants, the classic water-soluble N-acetyl-L-cysteine (NAC) and the novel hydrophobic N,N'-bis-2-mercaptoethyl isophthalamide (NBMI). Our results revealed that bleomycin induced cytotoxicity (lactate dehydrogenase leak), morphological alterations (rounding of cells and filipodia formation), and cytoskeletal rearrangement (actin stress fiber formation and alterations of tight junction proteins, ZO-1 and occludin) in a dose-dependent fashion. Furthermore, our study demonstrated the formation of reactive oxygen species, loss of thiols (glutathione, GSH), EC barrier dysfunction (decrease of transendothelial electrical resistance), and enhanced paracellular transport (leak) of macromolecules. The observed bleomycin-induced EC alterations were attenuated by both NAC and NBMI, revealing that the novel hydrophobic thiol-protectant, NBMI, was more effective at µM concentrations as compared to the water-soluble NAC that was effective at mM concentrations in offering protection against the bleomycin-induced EC alterations. Overall, the results of the current study suggested the central role of thiol-redox in vascular EC dysfunction associated with ILF.


Assuntos
Acetilcisteína/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Antioxidantes/farmacologia , Bleomicina/farmacologia , Cisteamina/análogos & derivados , Endotélio Vascular/efeitos dos fármacos , Fibrose Pulmonar Idiopática/prevenção & controle , Pulmão/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Compostos de Sulfidrila/farmacologia , Acetilcisteína/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Animais , Antioxidantes/química , Bovinos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisteamina/química , Cisteamina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Glutationa/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Microscopia de Fluorescência , Estrutura Molecular , Oxirredução , Ácidos Ftálicos/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
13.
Indian J Biochem Biophys ; 49(5): 329-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23259319

RESUMO

The use of cyclodextrins as tools to establish the role of cholesterol rafts in cellular functions has become a widely accepted procedure. However, the adverse effects of cyclodextrins as the cholesterol-depleting agents on cellular structure and functions are not reported in detail. Therefore, in the current study, we investigated the membrane-perturbing actions and cytotoxicity of the two widely used cellular cholesterol-depleting cyclodextrins methyl-beta-cyclodextrin (MbetaCD) and hydroxypropyl-beta-cyclodextrin (HPCD) in our well-established bovine pulmonary artery endothelial cell (BPAEC) in vitro model system. BPAECs treated with different concentrations of MbetaCD and HPCD (2% and 5%, wt/vol.) for 15-180 min showed significant loss of membrane cholesterol, cytotoxicity, cell morphology alterations, actin cytoskeletal reorganization, alterations in cellular proteins and membrane fatty acid composition, and decrease in trans-endothelial electrical resistance (TER). MbetaCD induced a marked loss of cellular proteins, as compared to that caused by HPCD under identical conditions. More noticeably, MbetaCD caused a drastic loss of membrane lipid fatty acids in BPAECs, as compared to HPCD which failed to cause such alteration. Removal of cholesterol by cyclodextrin (especially MbetaCD) treatment apparently caused loss of fluidity of the cell membrane and leakage of vital cellular molecules including proteins and fatty acids, and thus caused cytotoxicity and loss of cell morphology in BPAECs. Replenishment of cells with cholesterol following its depletion by MbetaCD treatment significantly attenuated the depletion of cellular cholesterol, cytotoxicity and morphological alterations in BPAECs, indicating the importance of membrane cholesterol in vascular EC integrity. Also, the current study offered a safer method of cholesterol removal from membranes and lipid rafts by HPCD, suggesting its use in studies to investigate the role of lipid raft-associated cholesterol in cellular functions.


Assuntos
Colesterol/metabolismo , Ciclodextrinas/farmacologia , Ciclodextrinas/toxicidade , Citoesqueleto/fisiologia , Células Endoteliais/fisiologia , Fluidez de Membrana/fisiologia , Microdomínios da Membrana/fisiologia , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/isolamento & purificação , Citoesqueleto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos
14.
Biomolecules ; 12(10)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291740

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease. Heme oxygenase-1 (HMOX1/HO-1) is an enzyme that catalyzes the degradation of heme. The role of HO-1 in the pathogenesis of IPF has been studied; however, the molecular regulation of HO-1 and its role in IPF are still unclear. In this study, we found that HO-1 protein levels significantly increased in lung myofibroblasts in IPF patients and in lungs in a murine model of bleomycin-induced lung fibrosis. In addition, we observed that administration of a E2F transcription factor inhibitor elevated HO-1 mRNA and protein levels in lung fibroblasts. Downregulation of E2F2 by siRNA transfection increased HO-1 mRNA and protein levels, while overexpression of E2F2 reduced HO-1 levels. However, overexpression of E2F2 did not alter hemin-induced HO-1 protein levels. Furthermore, modulation of HO-1 levels regulated TGF-ß1-induced myofibroblast differentiation without altering the phosphorylation of Smad2/3 in lung fibroblast cells. Moreover, the phosphorylation of protein kinase B (Akt) was significantly upregulated in HO-1-depleted lung fibroblast cells. In summary, this study demonstrated that E2F2 regulates the baseline expression of HO-1, but has no effect on modulating HO-1 expression by hemin. Finally, elevated HO-1 expression contributes to the TGF-ß1-induced lung myofibroblast differentiation through the activation of the serine/threonine kinase AKT pathway. Overall, our findings suggest that targeting E2F2/HO-1 might be a new therapeutic strategy to treat fibrotic diseases such as IPF.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Bleomicina/efeitos adversos , Fatores de Transcrição E2F/metabolismo , Fibroblastos/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hemina/farmacologia , Hemina/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Serina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
15.
J Innate Immun ; 14(5): 555-568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35367992

RESUMO

Emerging data support the pivotal role of extracellular vesicles (EVs) in normal cellular physiology and disease conditions. However, despite their abundance, there is much less information about the lipid mediators carried in EVs, especially in the context of acute lung injury (ALI). Our data demonstrate that C57BL/6 mice subjected to intranasal Escherichia coli lipopolysaccharide (LPS)-induced ALI release, a higher number of EVs into the alveolar space, compared to saline-treated controls. EVs released during ALI originated from alveolar epithelial cells, macrophages, and neutrophils and carry a diverse array of lipid mediators derived from ω-3 and ω-6 polyunsaturated fatty acids (PUFA). The eicosanoids in EVs correlated with cellular levels of arachidonic acid, expression of cytosolic phospholipase A2, cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome epoxygenase p450 proteins in pulmonary macrophages. Furthermore, EVs from LPS-toll-like receptor 4 knockout (TLR4-/-) mice contained significantly lower amounts of COX and LOX catalyzed eicosanoids and ω-3 PUFA metabolites. More importantly, EVs from LPS-treated wild-type mice increased TNF-α release by macrophages and reduced alveolar epithelial monolayer barrier integrity compared to EVs from LPS-treated TLR4-/- mice. In summary, our study demonstrates for the first time that the EV carried PUFA metabolite profile in part depends on the inflammatory status of the lung macrophages and modulates pulmonary macrophage and alveolar epithelial cell function during LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Vesículas Extracelulares/metabolismo , Lipidômica , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo
16.
Cell Biochem Biophys ; 80(1): 45-61, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34387841

RESUMO

Our earlier in vitro and in vivo studies have revealed that the phytosterol, pentalinonsterol (cholest-4,20,24-trien-3-one) (PEN), isolated from the roots of Pentalinon andrieuxii, possesss immunomodulatory properties in macrophages and dendritic cells. Leishmaniasis, caused by the infection of Leishmania spp. (a protozoan parasite), is emerging as the second-leading cause of mortality among the tropical diseases and there is an unmet need for a pharmacological intervention of leishmaniasis. Given the beneficial immunomodulatory actions and lipophilic properties of PEN, the objective of this study was to elucidate the mechanism(s) of action of the immunomodulatory action(s) of PEN in macrophages through the modulation of phospholipase A2 (PLA2) activity that might be crucial in the antileishmanial action of PEN. Therefore, in this study, we investigated whether PEN would modulate the activity of PLA2 in RAW 264.7 macrophages and mouse bone marrow-derived primary macrophages (BMDMs) in vitro and further determined how the upstream PLA2 activation would regulate the downstream cytokine release in the macrophages. Our current results demonstrated that (i) PEN induced PLA2 activation (arachidonic acid release) in a dose- and time-dependent manner that was regulated upstream by the mitogen-activated protein kinases (MAPKs); (ii) the PEN-induced activation of PLA2 was attenuated by the cPLA2-specific pharmacological inhibitors; and (iii) the cPLA2-specific pharmacological inhibitors attenuated the release of inflammatory cytokines from the macrophages. For the first time, our current study demonstrated that PEN exhibited its immunomodulatory actions through the activation of cPLA2 in the macrophages, which potentially could be used in the development of a pharmacological intervention against leishmaniasis.


Assuntos
Fitosteróis , Animais , Macrófagos/metabolismo , Camundongos , Fosfolipases A2/metabolismo , Fitosteróis/metabolismo , Esteróis/metabolismo , Esteróis/farmacologia
17.
Int J Toxicol ; 30(6): 619-38, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21994240

RESUMO

Here, we investigated thiol-redox-mediated phospholipase D (PLD) signaling as a mechanism of mercury cytotoxicity in mouse aortic endothelial cell (MAEC) in vitro model utilizing the novel lipid-soluble thiol-redox antioxidant and heavy metal chelator, N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) and the novel PLD-specific inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI). Our results demonstrated (i) mercury in the form of mercury(II) chloride, methylmercury, and thimerosal induced PLD activation in a dose- and time-dependent manner; (ii) NBMI and FIPI completely attenuated mercury- and oxidant-induced PLD activation; (iii) mercury induced upstream phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) leading to downstream threonine phosphorylation of PLD(1) which was attenuated by NBMI; (iv) mercury caused loss of intracellular glutathione which was restored by NBMI; and (v) NBMI and FIPI attenuated mercury- and oxidant-induced cytotoxicity in MAECs. For the first time, this study demonstrated that redox-dependent and PLD-mediated bioactive lipid signaling was involved in mercury-induced vascular EC cytotoxicity which was protected by NBMI and FIPI.


Assuntos
Antioxidantes/farmacologia , Quelantes/farmacologia , Células Endoteliais/efeitos dos fármacos , Mercúrio/toxicidade , Fosfolipase D/antagonistas & inibidores , Ácidos Ftálicos/farmacologia , Animais , Antioxidantes/síntese química , Aorta/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quelantes/síntese química , Domperidona/análogos & derivados , Domperidona/farmacologia , Células Endoteliais/metabolismo , Poluentes Ambientais/toxicidade , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , L-Lactato Desidrogenase/metabolismo , Metabolismo dos Lipídeos , Camundongos , Oxirredução , Fosfolipase D/metabolismo , Ácidos Ftálicos/síntese química , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo
18.
Int J Toxicol ; 30(1): 69-90, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131602

RESUMO

The mechanisms of lung microvascular complications and pulmonary hypertension known to be associated with idiopathic pulmonary fibrosis (IPF), a debilitating lung disease, are not known. Therefore, we investigated whether bleomycin, the widely used experimental IPF inducer, would be capable of activating phospholipase D (PLD) and generating the bioactive lipid signal-mediator phosphatidic acid (PA) in our established bovine lung microvascular endothelial cell (BLMVEC) model. Our results revealed that bleomycin induced the activation of PLD and generation of PA in a dose-dependent (5, 10, and 100 µg) and time-dependent (2-12 hours) fashion that were significantly attenuated by the PLD-specific inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI). PLD activation and PA generation induced by bleomycin (5 µg) were significantly attenuated by the thiol protectant (N-acetyl-L-cysteine), antioxidants, and iron chelators suggesting the role of reactive oxygen species (ROS), lipid peroxidation, and iron therein. Furthermore, our study demonstrated the formation of ROS and loss of glutathione (GSH) in cells following bleomycin treatment, confirming oxidative stress as a key player in the bleomycin-induced PLD activation and PA generation in ECs. More noticeably, PLD activation and PA generation were observed to happen upstream of bleomycin-induced cytotoxicity in BLMVECs, which was protected by FIPI. This was also supported by our current findings that exposure of cells to exogenous PA led to internalization of PA and cytotoxicity in BLMVECs. For the first time, this study revealed novel mechanism of the bleomycin-induced redox-sensitive activation of PLD that led to the generation of PA, which was capable of inducing lung EC cytotoxicity, thus suggesting possible bioactive lipid-signaling mechanism/mechanisms of microvascular disorders encountered in IPF.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Endotélio Vascular/efeitos dos fármacos , Fibrose Pulmonar Idiopática/induzido quimicamente , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Domperidona/análogos & derivados , Domperidona/farmacologia , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Ativação Enzimática/efeitos dos fármacos , Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/patologia , Indóis/farmacologia , Pulmão/irrigação sanguínea , Microvasos/citologia , Microvasos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfolipase D/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
19.
Cell Biochem Biophys ; 79(3): 669-694, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34244966

RESUMO

Asthma is a heterogeneous pulmonary disease that has constantly increased in prevalence over the past several decades. Primary symptoms include airway constriction, airway hyperresponsiveness, and airway remodeling with additional symptoms such as shortness of breath, wheezing, and difficulty breathing. Allergic asthma involves chronic inflammation of the lungs, and the rise in its yearly diagnosis is potentially associated with the increased global consumption of foods similar to the western diet. Thus, there is growing interest into the link between diet and asthma symptoms, with mounting evidence for an important modulatory role for dietary lipids. Lipids can act as biological mediators in both a proinflammatory and proresolution capacity. Fatty acids play key roles in signaling and in the production of mediators in the allergic and inflammatory pathways. The western diet leads to a disproportionate ω-6:ω-3 ratio, with drastically increased ω-6 levels. To counteract this, consumption of fish and fish oil and the use of dietary oils with anti-inflammatory properties such as olive and sesame oil can increase ω-3 and decrease ω-6 levels. Increasing vitamin intake, lowering LDL cholesterol levels, and limiting consumption of oxidized lipids can help reduce the risk of asthma and the exacerbation of asthmatic symptoms. These dietary changes can be achieved by increasing intake of fruits, vegetables, nuts, oily fish, seeds, animal-related foods (eggs, liver), cheeses, grains, oats, and seeds, and decreasing consumption of fried foods (especially fried in reused oils), fast foods, and heavily processed foods.


Assuntos
Ácidos Graxos Ômega-3
20.
Antioxidants (Basel) ; 10(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802941

RESUMO

Pseudomonas aeruginosa (PA) infection increases reactive oxygen species (ROS), and earlier, we have shown a role for NADPH oxidase-derived ROS in PA-mediated lung inflammation and injury. Here, we show a role for the lung epithelial cell (LEpC) NOX4 in PA-mediated chromatin remodeling and lung inflammation. Intratracheal administration of PA to Nox4flox/flox mice for 24 h caused lung inflammatory injury; however, epithelial cell-deleted Nox4 mice exhibited reduced lung inflammatory injury, oxidative stress, secretion of pro-inflammatory cytokines, and decreased histone acetylation. In LEpCs, NOX4 was localized both in the cytoplasmic and nuclear fractions, and PA stimulation increased the nuclear NOX4 expression and ROS production. Downregulation or inhibition of NOX4 and PKC δ attenuated the PA-induced nuclear ROS. PA-induced histone acetylation was attenuated by Nox4-specific siRNA, unlike Nox2. PA stimulation increased HDAC1/2 oxidation and reduced HDAC1/2 activity. The PA-induced oxidation of HDAC2 was attenuated by N-acetyl-L-cysteine and siRNA specific for Pkc δ, Sphk2, and Nox4. PA stimulated RAC1 activation in the nucleus and enhanced the association between HDAC2 and RAC1, p-PKC δ, and NOX4 in LEpCs. Our results revealed a critical role for the alveolar epithelial NOX4 in mediating PA-induced lung inflammatory injury via nuclear ROS generation, HDAC1/2 oxidation, and chromatin remodeling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA