Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plant J ; 118(5): 1528-1549, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507319

RESUMO

Rapid alkalinization factors (RALFs), belonging to a family of small secreted peptides, have been considered as important signaling molecules in diverse biological processes, including immunity. Current studies on RALF-modulated immunity mainly focus on Arabidopsis, but little is reported in crop plants. The rice immune receptor XA21 confers immunity to the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo). Here, we pursued functional characterization of rice RALF26 (OsRALF26) up-regulated by Xoo during XA21-mediated immune response. When applied exogenously as a recombinant peptide, OsRALF26 induced a series of immune responses, including pathogenesis-related genes (PRs) induction, reactive oxygen species (ROS) production, and callose deposition in rice and/or Arabidopsis. Transgenic rice and Arabidopsis overexpressing OsRALF26 exhibited significantly enhanced resistance to Xoo and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), respectively. In yeast two-hybrid, pull-down assays, and co-immunoprecipitation analyses, rice FER-like receptor 1 (OsFLR1) was identified as a receptor of OsRALF26. Transient expression of OsFLR1 in Nicotiana benthamiana leaves displayed significantly increased ROS production and callose deposition after OsRALF26 treatment. Together, we propose that OsRALF26 induced by Xoo in an XA21-dependent manner is perceived by OsFLR1 and may play a novel role in the enforcement of XA21-mediated immunity.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Oryza , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Xanthomonas , Oryza/genética , Oryza/microbiologia , Oryza/imunologia , Oryza/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiologia , Xanthomonas/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença/genética , Glucanos/metabolismo , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia
2.
Plant Cell Rep ; 43(3): 72, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376569

RESUMO

KEY MESSAGE: Rice CC-type NLR XinN1, specifically induced by a PRR XA21, activates defense pathways against Xoo. Plants have evolved two layers of immune systems regulated by two different types of immune receptors, cell surface located pattern recognition receptors (PRRs) and intracellular nucleotide-binding domain leucine-rich repeat-containing receptors (NLRs). Plant PRRs recognize conserved molecular patterns from diverse pathogens, resulting in pattern-triggered immunity (PTI), whereas NLRs are activated by effectors secreted by pathogens into plant cells, inducing effector-triggered immunity (ETI). Rice PRR, XA21, recognizes a tyrosine-sulfated RaxX peptide (required for activation of XA21-mediated immunity X) as a molecular pattern secreted by Xanthomonas oryzae pv. oryzae (Xoo). Here, we identified a rice NLR gene, XinN1, that is specifically induced during the XA21-mediated immune response against Xoo. Transgenic rice plants overexpressing XinN1 displayed increased resistance to infection by Xoo with reduced lesion length and bacterial growth. Overexpression of autoactive mutant of XinN1 (XinN1D543V) also displayed increased resistance to Xoo, accompanied with severe growth retardation and cell death. In rice protoplast system, overexpression of XinN1 or XinN1D543V significantly elevated reactive oxygen species (ROS) production and cytosolic-free calcium (Ca2+) accumulations. In addition, XinN1 overexpression additionally elevated the ROS burst caused by the interaction between XA21 and RaxX-sY and induced the transcription of PTI signaling components, including somatic embryogenesis receptor kinases (OsSERKs) and receptor-like cytoplasmic kinases (OsRLCKs). Our results suggest that XinN1 induced by the PRR XA21 activates defense pathways and provides enhanced resistance to Xoo in rice.


Assuntos
Oryza , Oryza/genética , Espécies Reativas de Oxigênio , Receptores de Reconhecimento de Padrão/genética , Transdução de Sinais , Transporte Biológico
3.
Plant Mol Biol ; 93(4-5): 497-509, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28004240

RESUMO

Alpha-dioxygenases (α-DOX) catalyzing the primary oxygenation of fatty acids to oxylipins were recently found in plants. Here, the biological roles of the pepper α-DOX (Ca-DOX) gene, which is strongly induced during non-host pathogen infection in chili pepper, were examined. Virus-induced gene silencing demonstrated that down-regulation of Ca-DOX enhanced susceptibility to bacterial pathogens and suppressed the hypersensitive response via the suppression of pathogenesis-related genes such as PR4, proteinase inhibitor II and lipid transfer protein (PR14). Ca-DOX-silenced pepper plants also exhibited more retarded growth with lower epidermal cell numbers and reduced cell wall thickness than control plants. To better understand regulation of Ca-DOX, transgenic Arabidopsis plants harboring the ß-glucuronidase (GUS) reporter gene driven from a putative Ca-DOX promoter were generated. GUS expression was significantly induced upon avirulent pathogen infection in transgenic Arabidopsis leaves, whereas GUS induction was relatively weak upon virulent pathogen treatment. After treatment with plant hormones, early and strong GUS expression was seen after treatment of salicylic acid, whereas ethylene and methyl jasmonate treatments produced relatively weak and late GUS signals. These results will enable us to further understand the role of α-DOX, which is important in lipid metabolism, defense responses, and growth development in plants.


Assuntos
Capsicum/genética , Dioxigenases/genética , Resistência à Doença/genética , Inativação Gênica , Proteínas de Plantas/genética , Sequência de Aminoácidos , Capsicum/microbiologia , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Microscopia Eletrônica de Transmissão , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Xanthomonas/fisiologia
4.
Biochem Biophys Res Commun ; 448(1): 70-5, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24780396

RESUMO

Plant innate immunity is mediated by pattern recognition receptors (PRRs) and intracellular NB-LRR (nucleotide-binding domain and leucine-rich repeat) proteins. Overexpression of the endoplasmic reticulum (ER) chaperone, luminal-binding protein 3 (BiP3) compromises resistance to Xanthomonas oryzae pv. oryzae (Xoo) mediated by the rice PRR XA21 [12]. Here we show that BiP3 overexpression also compromises resistance mediated by rice XA3, a PRR that provides broad-spectrum resistance to Xoo. In contrast, BiP3 overexpression has no effect on resistance mediated by rice Pi5, an NB-LRR protein that confers resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae). Our results suggest that rice BiP3 regulates membrane-resident PRR-mediated immunity.


Assuntos
Chaperonas Moleculares/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores de Reconhecimento de Padrão/fisiologia , Retículo Endoplasmático/fisiologia , Chaperonas Moleculares/genética , Oryza/genética , Oryza/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Receptores Proteína Tirosina Quinases/genética , Receptores de Reconhecimento de Padrão/genética , Xanthomonas/patogenicidade
5.
PLoS Genet ; 7(4): e1002020, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21533176

RESUMO

Rice (Oryza sativa) is a staple food for more than half the world and a model for studies of monocotyledonous species, which include cereal crops and candidate bioenergy grasses. A major limitation of crop production is imposed by a suite of abiotic and biotic stresses resulting in 30%-60% yield losses globally each year. To elucidate stress response signaling networks, we constructed an interactome of 100 proteins by yeast two-hybrid (Y2H) assays around key regulators of the rice biotic and abiotic stress responses. We validated the interactome using protein-protein interaction (PPI) assays, co-expression of transcripts, and phenotypic analyses. Using this interactome-guided prediction and phenotype validation, we identified ten novel regulators of stress tolerance, including two from protein classes not previously known to function in stress responses. Several lines of evidence support cross-talk between biotic and abiotic stress responses. The combination of focused interactome and systems analyses described here represents significant progress toward elucidating the molecular basis of traits of agronomic importance.


Assuntos
Interações Hospedeiro-Patógeno/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Adaptação Fisiológica , Clonagem Molecular , Perfilação da Expressão Gênica , Imunidade Inata , Oryza/imunologia , Oryza/microbiologia , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Mapeamento de Interação de Proteínas , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Xanthomonas/patogenicidade
6.
Fungal Biol ; 127(4): 985-996, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024158

RESUMO

Tomato grey mould has been a great concern during tomato production. The in vitro antifungal activity of vapours emitted from four plant essential oils (EOs) (cinnamon oil, fennel oil, origanum oil, and thyme oil) were evaluated during in vitro conidial germination and mycelial growth of Botrytis cinerea, the causal agent of grey mould. Cinnamon oil vapour was the most effective in suppressing conidial germination, whereas the four EOs showed similar activities regarding inhibiting mycelial growth in dose-dependent manners. The in planta protection effect of the four EO vapours was also investigated by measuring necrotic lesions on tomato leaves inoculated by B. cinerea. Grey mould lesions on the inoculated leaves were reduced by the vapours from cinnamon oil, origanum oil and thyme oil at different levels, but fennel oil did not limit the spread of the necrotic lesions. Decreases in cuticle defect, lipid peroxidation, and hydrogen peroxide production in the B. cinerea-inoculated leaves were correlated with reduced lesions by the cinnamon oil vapours. The reduced lesions by the cinnamon oil vapour were well matched with arrested fungal proliferation on the inoculated leaves. The cinnamon oil vapour regulated tomato defence-related gene expression in the leaves with or without fungal inoculation. These results suggest that the plant essential oil vapours, notably cinnamon oil vapour, can provide eco-friendly alternatives to manage grey mould during tomato production.


Assuntos
Óleos Voláteis , Solanum lycopersicum , Thymus (Planta) , Óleos de Plantas/farmacologia , Óleos Voláteis/farmacologia , Botrytis , Doenças das Plantas/microbiologia
7.
Front Plant Sci ; 13: 964059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161014

RESUMO

Calcium (Ca2+) serves as a ubiquitous second messenger by mediating various signaling pathways and responding to numerous environmental conditions in eukaryotes. Therefore, plant cells have developed complex mechanisms of Ca2+ communication across the membrane, receiving the message from their surroundings and transducing the information into cells and organelles. A wide range of biotic and abiotic stresses cause the increase in [Ca2+]cyt as a result of the Ca2+ influx permitted by membrane-localized Ca2+ permeable cation channels such as CYCLIC NUCLEOTIDE-GATE CHANNELs (CNGCs), and voltage-dependent HYPERPOLARIZATION-ACTIVATED CALCIUM2+ PERMEABLE CHANNELs (HACCs), as well as GLUTAMATE RECEPTOR-LIKE RECEPTORs (GLRs) and TWO-PORE CHANNELs (TPCs). Recently, resistosomes formed by some NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT RECEPTORs (NLRs) are also proposed as a new type of Ca2+ permeable cation channels. On the contrary, some Ca2+ transporting membrane proteins, mainly Ca2+-ATPase and Ca2+/H+ exchangers, are involved in Ca2+ efflux for removal of the excessive [Ca2+]cyt in order to maintain the Ca2+ homeostasis in cells. The Ca2+ efflux mechanisms mediate the wide ranges of cellular activities responding to external and internal stimuli. In this review, we will summarize and discuss the recent discoveries of various membrane proteins involved in Ca2+ influx and efflux which play an essential role in fine-tuning the processing of information for plant responses to abiotic and biotic stresses.

8.
Front Plant Sci ; 13: 859375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360326

RESUMO

All genomes carry lineage-specific orphan genes lacking homology in their closely related species. Identification and functional study of the orphan genes is fundamentally important for understanding lineage-specific adaptations including acquirement of resistance to pathogens. However, most orphan genes are of unknown function due to the difficulties in studying them using helpful comparative genomics. Here, we present a defense-related Oryza-specific orphan gene, Xio1, specifically induced by the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) in an immune receptor XA21-dependent manner. Salicylic acid (SA) and ethephon (ET) also induced its expression, but methyl jasmonic acid (MeJA) reduced its basal expression. C-terminal green fluorescent protein (GFP) tagged Xio1 (Xio1-GFP) was visualized in the nucleus and the cytosol after polyethylene glycol (PEG)-mediated transformation in rice protoplasts and Agrobacterium-mediated infiltration in tobacco leaves. Transgenic rice plants overexpressing Xio1-GFP showed significantly enhanced resistance to Xoo with reduced lesion lengths and bacterial growth, in company with constitutive expression of defense-related genes. However, all of the transgenic plants displayed severe growth retardation and premature death. Reactive oxygen species (ROS) was significantly produced in rice protoplasts constitutively expressing Xio1-GFP. Overexpression of Xio1-GFP in non-Oryza plant species, Arabidopsis thaliana, failed to induce growth retardation and enhanced resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. Our results suggest that the defense-related orphan gene Xio1 plays an important role in distinctive mechanisms evolved within the Oryza and provides a new source of Oryza-specific genes for crop-breeding programs.

9.
Plant Pathol J ; 38(5): 522-532, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36221924

RESUMO

Gummy stem blight (GSB), a common and serious disease in cucurbits worldwide, is caused by three genetically distinct species: Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), S. citrulli, and S. caricae. In Korea, however, the three species of Stagonosporopsis have been barely characterized. In this study, 21 Stagonosporopsis isolates were recovered from watermelon (Citrullus lanatus) and muskmelon (Cucumis melo) leaves and stem showing blight symptoms collected from 43 fields in Korea. Sequence analysis performed with an internal transcribed spacer region was not competent to differentiate the Stagonosporopsis isolates. On the contrary, analysis of ß-tubulin (TUB) genes and three microsatellite markers, Db01, Db05, and Db06, successfully differentiated Stagonosporopsis isolates. Further sequence analysis identified two Stagonosporopsis species, S. citrulli and S. caricae, and one previously unknown species of Stagonosporopsis. Representative isolates from three species caused dark water-soaked lesions on the detached watermelon and muskmelon leaves with no significant differences in the aggressiveness. Our results indicate that the S. citrulli, S. caricae, and unknown Stagonosporopsis sp. are all causal agents of GSB for both watermelon and muskmelon. This is the first report of a new species and the population structure of Stagonosporopsis species causing GSB in Korea.

10.
Biochem Biophys Res Commun ; 411(3): 613-9, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21771584

RESUMO

In plant, some WRKY transcription factors are known to play an important role in the transcriptional reprogramming associated with the immune response. By using WRKY-domain-specific differential display procedure, we isolated CaWRKYb gene, which is rapidly induced during an incompatible interaction between hot pepper and Tobacco mosaic virus (TMV) pathotype P(0) infection. The recombinant CaWRKYb bound to the W box-containing CaPR-10 promoter probes efficiently and the specificity of binding was confirmed by mutant study and competition with cold oligonucleotides. Also, in GUS reporter activity assay using Arabidopsis protoplasts with the CaPR-10 promoter, GUS activity was increased in the presence of CaWRKYb. And CaWRKYb-knockdown plant showed reduced number of hypersensitive response local lesions upon TMV-P(0) infection. Furthermore, CaWRKYb-knockdown plant exhibited compromised resistance to TMV-P(0) by accumulating more TMV, apparently through decreased expression of CaPR-10, CaPR-1, and CaPR-5. These results suggest that CaWRKYb is involved as a positive transcription factor in defense-related signal transduction pathways in hot pepper.


Assuntos
Capsicum/virologia , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Vírus do Mosaico do Tabaco , Fatores de Transcrição/metabolismo , Capsicum/genética , Capsicum/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
11.
Cell Microbiol ; 12(8): 1017-25, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20590657

RESUMO

In the early 1970s, the Xa21 gene from the wild rice species Oryza longistaminata drew attention of rice breeders because of its broad-spectrum resistance to diverse strains of a serious bacterial disease of rice in Asia and Africa, called 'bacterial blight disease', caused by the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae (Xoo). In 1995, we isolated the gene controlling this resistance and in 2009 demonstrated that XA21 recognizes a highly conserved peptide, called 'Ax21' (activator of XA21-mediated immunity). Tyrosine sulfation of Ax21 is required for recognition by rice XA21. A decade of genetic, molecular and biochemical studies have uncovered key components of the XA21-mediated signalling cascade. Ax21 recognition by XA21 at the cell surface induces phosphorylation-mediated events, which are predicted to alter subcellular localization and/or DNA-binding activity of a WRKY family of transcription factors. Because XA21 is representative of the large number of predicted pattern recognition receptors (PRRs) in rice (n = 328), Arabidopsis (n = 35) and other plant species, further characterization of XA21-mediated signalling pathways will contribute to elucidation of these important defence responses.


Assuntos
Imunidade Inata , Oryza/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Oryza/genética , Fosforilação , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
12.
PLoS Biol ; 6(9): e231, 2008 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-18817453

RESUMO

Perception of extracellular signals by cell surface receptors is of central importance to eukaryotic development and immunity. Kinases that are associated with the receptors or are part of the receptors themselves modulate signaling through phosphorylation events. The rice (Oryza sativa L.) XA21 receptor kinase is a key recognition and signaling determinant in the innate immune response. A yeast two-hybrid screen using the intracellular portion of XA21, including the juxtamembrane (JM) and kinase domain as bait, identified a protein phosphatase 2C (PP2C), called XA21 binding protein 15 (XB15). The interaction of XA21 and XB15 was confirmed in vitro and in vivo by glutathione-S-transferase (GST) pull-down and co-immunoprecipitation assays, respectively. XB15 fusion proteins purified from Escherichia coli and from transgenic rice carry PP2C activity. Autophosphorylated XA21 can be dephosphorylated by XB15 in a temporal- and dosage-dependent manner. A serine residue in the XA21 JM domain is required for XB15 binding. Xb15 mutants display a severe cell death phenotype, induction of pathogenesis-related genes, and enhanced XA21-mediated resistance. Overexpression of Xb15 in an XA21 rice line compromises resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. These results demonstrate that Xb15 encodes a PP2C that negatively regulates the XA21-mediated innate immune response.


Assuntos
Morte Celular/fisiologia , Oryza/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Imunidade Inata , Dados de Sequência Molecular , Oryza/genética , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/genética , Fosforilação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteína Fosfatase 2C , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Retroelementos/genética , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido , Xanthomonas/imunologia , Xanthomonas/patogenicidade
13.
Plant Pathol J ; 37(4): 329-338, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34365744

RESUMO

Alternaria leaf blight is one of the most common diseases in watermelon worldwide. In Korea, however, the Alternaria species causing the watermelon leaf blight have not been investigated thoroughly. A total of 16 Alternaria isolates was recovered from diseased watermelon leaves with leaf blight symptoms, which were collected from 14 fields in Korea. Analysis of internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and RNA polymerase II second largest subunit (RPB2) were not competent to differentiate the Alternaria isolates. On the contrary, analysis of amplicon size of the histone H3 (HIS3) gene successfully differentiated the isolates into three Alternaria subgroups, and further sequence analysis of them identified three Alternaria spp. Alternaria tenuissima, A. gaisen, and A. alternata. Representative Alternaria isolates from three species induced dark brown leaf spot lesions on detached watermelon leaves, indicating that A. tenuissima, A. gaisen, and A. alternata are all causal agents of Alternaria leaf blight. Our results indicate that the Alternaria species associated watermelon leaf blight in Korea is more complex than reported previously. This is the first report regarding the population structure of Alternaria species causing watermelon leaf blight in Korea.

14.
Plant Pathol J ; 36(4): 335-345, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32788892

RESUMO

Tomato grey mould has been one of the destructive fungal diseases during tomato production. Ten mM of menadione sodium bisulfite (MSB) was applied to tomato plants for eco-friendly control of the grey mould. MSB-reduced tomato grey mould in the 3rd true leaves was prolonged at least 7 days prior to the fungal inoculation of two inoculum densities (2 × 104 and 2 × 105 conidia/ml) of Botrytis cinerea. Protection efficacy was significantly higher in the leaves inoculated with the lower disease pressure of conidial suspension compared to the higher one. MSB-pretreatment was not effective to arrest oxalic acid-triggered necrosis on tomato leaves. Plant cell death and hydrogen peroxide accumulation were restricted in necrotic lesions of the B. cinereainoculated leaves by the MSB-pretreatment. Decreased conidia number and germ-tube elongation of B. cinerea were found at 10 h, and mycelial growth was also impeded at 24 h on the MSB-pretreated leaves. MSBmediated disease suppressions were found in cotyledons and different positions (1st to 5th) of true leaves inoculated with the lower conidial suspension, but only 1st to 3rd true leaves showed decreases in lesion sizes by the higher inoculum density. Increasing MSB-pretreatment times more efficiently decreased the lesion size by the higher disease pressure. MSB led to inducible expressions of defence-related genes SlPR1a, SlPR1b, SlPIN2, SlACO1, SlChi3, and SlChi9 in tomato leaves prior to B. cinerea infection. These results suggest that MSB pretreatment can be a promising alternative to chemical fungicides for environment-friendly management of tomato grey mould.

15.
Front Plant Sci ; 10: 399, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019523

RESUMO

Most studies of environmental adaptations in plants have focused on either biotic or abiotic stress factors in an attempt to understand the defense mechanisms of plants against individual stresses. However, in the natural ecosystem, plants are simultaneously exposed to multiple stresses. Stress-tolerant crops developed in translational studies based on a single stress often fail to exhibit the expected traits in the field. To adapt to abiotic stress, recent studies have identified the need for interactions of plants with various microorganisms. These findings highlight the need to understand the multifaceted interactions of plants with biotic and abiotic stress factors. The endoplasmic reticulum (ER) is an organelle that links various stress responses. To gain insight into the molecular integration of biotic and abiotic stress responses in the ER, we focused on the interactions of plants with RNA viruses. This interaction points toward the relevance of ER in viral pathogenicity as well as plant responses. In this mini review, we explore the molecular crosstalk between biotic and abiotic stress signaling through the ER by elaborating ER-mediated signaling in response to RNA viruses and abiotic stresses. Additionally, we summarize the results of a recent study on phytohormones that induce ER-mediated stress response. These studies will facilitate the development of multi-stress-tolerant transgenic crops in the future.

16.
Rice (N Y) ; 12(1): 71, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31520232

RESUMO

It was highlighted that in the original article (Kim, 2019).

17.
Rice (N Y) ; 12(1): 67, 2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31446506

RESUMO

BACKGROUND: Genome editing tools are important for functional genomics research and biotechnology applications. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) system for gene knockout has emerged as the most effective genome-editing tool. It has previously been reported that, in rice plants, knockdown of the Os8N3 gene resulted in enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo), while displaying abnormal pollen development. RESULTS: The CRISPR/Cas9 system was employed to knockout rice Os8N3, in order to confer enhanced resistance to Xoo. Analysis of the genotypes and edited Os8N3 in T0, T1, T2, and T3 transgenic rice plants showed that the mutations were transmitted to subsequent generations, and homozygous mutants displayed significantly enhanced resistance to Xoo. Stable transmission of CRISPR/Cas9-mediated Os8N3 gene editing without the transferred DNA (T-DNA) was confirmed by segregation in the T1 generation. With respect to many investigated agronomic traits including pollen development, there was no significant difference between homozygous mutants and non-transgenic control plants under greenhouse growth conditions. CONCLUSION: Data from this study indicate that the CRISPR/Cas9-mediated Os8N3 edition can be successfully employed for non-transgenic crop improvements.

18.
BMC Microbiol ; 8: 164, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18826644

RESUMO

BACKGROUND: Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight disease, is a serious pathogen of rice. Here we describe a fluorescent marker system to study virulence and pathogenicity of X. oryzae pv. oryzae. RESULTS: A fluorescent X. oryzae pv. oryzae Philippine race 6 strain expressing green fluorescent protein (GFP) (PXO99GFP) was generated using the gfp gene under the control of the neomycin promoter in the vector, pPneo-gfp. The PXO99GFPstrain displayed identical virulence and avirulence properties as the wild type control strain, PXO99. Using fluorescent microscopy, bacterial multiplication and colonization were directly observed in rice xylem vessels. Accurate and rapid determination of bacterial growth was assessed using fluoremetry and an Enzyme-Linked ImmunoSorbant Assay (ELISA). CONCLUSION: Our results indicate that the fluorescent marker system is useful for assessing bacterial infection and monitoring bacterial multiplication in planta.


Assuntos
Oryza/microbiologia , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/patogenicidade , Fluorescência , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Plasmídeos , Regiões Promotoras Genéticas , Coloração e Rotulagem/métodos , Virulência , Xanthomonas/genética , Xilema/microbiologia
19.
PeerJ ; 6: e6074, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581670

RESUMO

Tyrosine phosphorylation has emerged as an important regulator of plasma membrane-localized immune receptors activity. Here, we investigate the role of tyrosine phosphorylation in the regulation of rice XANTHOMONAS RESISTANCE 21 (XA21)-mediated immunity. We demonstrate that the juxtamembrane and kinase domain of Escherichia coli-expressed XA21 (XA21JK) autophosphorylates on tyrosine residues. Directed mutagenesis of four out of the nine tyrosine residues in XA21JK reduced autophosphorylation. These sites include Tyr698 in the juxtamembrane domain, and Tyr786, Tyr907, and Tyr909 in the kinase domain. Rice plants expressing XA21-GFP fusion proteins or proteins with these tyrosine residues individually mutated to phenylalanine (XA21YF-GFP), which prevents phosphorylation at these sites, maintain resistance to Xanthomonas oryzae pv. oryzae. In contrast, plants expressing phosphomimetic XA21 variants with tyrosine mutated to aspartate (XA21YD-GFP) were susceptible. In vitro purified XA21JKY698F, XA21JKY907F, and XA21JKY909F variants are catalytically active, whereas activity was not detected in XA21JKY768F and the four XA21JKYD variants. We previously demonstrated that interaction of XA21 with the co-receptor OsSERK2 is critical for biological function. Four of the XA21JKYF variants maintain interaction with OsSERK2 as well as the XA21 binding (XB) proteins XB3 and XB15 in yeast, suggesting that these four tyrosine residues are not required for their interaction. Taken together, these results suggest that XA21 is capable of tyrosine autophosphorylation, but the identified tyrosine residues are not required for activation of XA21-mediated immunity or interaction with predicted XA21 signaling proteins.

20.
Plant Pathol J ; 34(1): 78-84, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29422791

RESUMO

Peroxyacetic acid mixture Perosan, composed of peroxyacetic acid, hydrogen peroxide and acetic acid, was evaluated for eco-friendly management of tomato bacterial wilt by Ralstonia pseudosolanacearum. Perosan drastically suppressed in vitro growth of R. pseudosolanacearum in liquid cultures in dose- and incubation time-dependent manners. Higher perosan doses (0.1 and 1%) caused lowered pH and phytotoxicity to detached leaves of two tomato cultivars Cupirang and Benekia 220 in aqueous solution. Treatment with 0.01% of Perosan delayed wilting symptom significantly in the detached leaves of two cultivars inoculated with R. pseudosolanacearum (107 cfu/ml). Soil drenching of 5% Perosan solution in pots caused severe tissue collapse of tomato seedlings at the four-week-old stage of two tomato cultivars. Treatment with 1% Perosan by soil-drenching significantly reduced bacterial wilt in the tomato seedlings of two cultivars. These findings suggest that Perosan treatment can be applied to suppress bacterial wilt during tomato production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA