Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(15): 7166-7173, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506183

RESUMO

A key aspect of how the brain learns and enables decision-making processes is through synaptic interactions. Electrical transmission and communication in a network of synapses are modulated by extracellular fields generated by ionic chemical gradients. Emulating such spatial interactions in synthetic networks can be of potential use for neuromorphic learning and the hardware implementation of artificial intelligence. Here, we demonstrate that in a network of hydrogen-doped perovskite nickelate devices, electric bias across a single junction can tune the coupling strength between the neighboring cells. Electrical transport measurements and spatially resolved diffraction and nanoprobe X-ray and scanning microwave impedance spectroscopic studies suggest that graded proton distribution in the inhomogeneous medium of hydrogen-doped nickelate film enables this behavior. We further demonstrate signal integration through the coupling of various junctions.

2.
Nat Commun ; 15(1): 3492, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664381

RESUMO

CMOS-RRAM integration holds great promise for low energy and high throughput neuromorphic computing. However, most RRAM technologies relying on filamentary switching suffer from variations and noise, leading to computational accuracy loss, increased energy consumption, and overhead by expensive program and verify schemes. We developed a filament-free, bulk switching RRAM technology to address these challenges. We systematically engineered a trilayer metal-oxide stack and investigated the switching characteristics of RRAM with varying thicknesses and oxygen vacancy distributions to achieve reliable bulk switching without any filament formation. We demonstrated bulk switching at megaohm regime with high current nonlinearity, up to 100 levels without compliance current. We developed a neuromorphic compute-in-memory platform and showcased edge computing by implementing a spiking neural network for an autonomous navigation/racing task. Our work addresses challenges posed by existing RRAM technologies and paves the way for neuromorphic computing at the edge under strict size, weight, and power constraints.

3.
ACS Nano ; 14(2): 2533-2541, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32040301

RESUMO

Electronic phase modulation based on hydrogen insertion/extraction is kinetically limited by the bulk hydrogen diffusion or surface exchange reaction, so slow hydrogen kinetics has been a fundamental challenge to be solved for realizing faster solid-state electrochemical switching devices. Here we accelerate electronic phase modulation that occurs by hydrogen insertion in VO2 through vertically aligned 2D defects induced by symmetry mismatch between epitaxial films and substrates. By using domain-matching epitaxial growth of monoclinic VO2 films with lattice rotation and twinning on hexagonal Al2O3 substrates, the domain boundaries naturally align vertically; they provide a "highway" for hydrogen diffusion and surface exchange in VO2 films and overcome the limited rates of bulk diffusion and surface reaction. From the quantitative analysis of the deuterium (2H) isotope tracer exchange, it is confirmed that the tracer diffusion coefficient (D*) and surface exchange coefficient (k*) were increased by several orders of magnitude in VO2 films that had domain boundaries. These results yield fundamental insights into the mechanism by which mobile ions are inserted along extended defects and provide a strategy to overcome a limitation to switching speed in electrochemical devices that exploit ion insertion.

4.
ACS Appl Mater Interfaces ; 10(5): 4831-4837, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29327588

RESUMO

Transition-metal oxides (TMOs) with brownmillerite (BM) structures possess one-dimensional oxygen vacancy channels (OVCs), which play a key role in realizing high ionic conduction at low temperatures. The controllability of the vacancy channel orientation, thus, possesses a great potential for practical applications and would provide a better visualization of the diffusion pathways of ions in TMOs. In this study, the orientations of the OVCs in BM-SrFeO2.5 are stabilized along two crystallographic directions of the epitaxial thin films. The distinctively orientated phases are found to be highly stable and exhibit a considerable difference in their electronic structures and optical properties, which could be understood in terms of orbital anisotropy. The control of the OVC orientation further leads to modifications in the hydrogenation of the BM-SrFeO2.5 thin films. The results demonstrate a strong correlation between crystallographic orientations, electronic structures, and ionic motion in the BM structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA