Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35027452

RESUMO

Alzheimer's disease (AD) is characterized by complex, multifactorial neuropathology, suggesting that small molecules targeting multiple neuropathological factors are likely required to successfully impact clinical progression. Acid sphingomyelinase (ASM) activation has been recognized as an important contributor to these neuropathological features in AD, leading to the concept of using ASM inhibitors for the treatment of this disorder. Here we report the identification of KARI 201, a direct ASM inhibitor evaluated for AD treatment. KARI 201 exhibits highly selective inhibition effects on ASM, with excellent pharmacokinetic properties, especially with regard to brain distribution. Unexpectedly, we found another role of KARI 201 as a ghrelin receptor agonist, which also has therapeutic potential for AD treatment. This dual role of KARI 201 in neurons efficiently rescued neuropathological features in AD mice, including amyloid beta deposition, autophagy dysfunction, neuroinflammation, synaptic loss, and decreased hippocampal neurogenesis and synaptic plasticity, leading to an improvement in memory function. Our data highlight the possibility of potential clinical application of KARI 201 as an innovative and multifaceted drug for AD treatment.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Neuropatologia/métodos , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Memória , Camundongos , Plasticidade Neuronal , Neurônios/metabolismo , Receptores de Grelina/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
2.
Biochem Biophys Res Commun ; 695: 149441, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38176174

RESUMO

Low-density lipoprotein receptor-related protein 6 (LRP6) is a receptor protein for Wnt ligands. Yet, their role in immune cell regulation remains elusive. Here we demonstrated that genetic deletion of LRP6 in macrophages using LysM-cre Lrp6fl/fl (Lrp6MKO) mice showed differential inhibition of inflammation in the bleomycin (BLM)-induced lung injury model and B16F10 melanoma lung metastasis model. Lrp6MKO mice showed normal immune cell populations in the lung and circulating blood in homeostatic conditions. In the BLM-induced lung injury model, Lrp6MKO mice showed a decreased number of monocyte-derived alveolar macrophages, reduced collagen deposition and alpha-smooth muscle actin (αSMA) protein levels in the lung. In B16F10 lung metastasis model, Lrp6MKO mice reduced lung tumor foci. Monocytic and granulocytic-derived myeloid-derived suppressor cells (M-MDSCs and G-MDSCs) were increased in the lung. In G-MDSCs, hypoxia-inducible factor 1α (HIF1α)+ PDL1+ population was markedly decreased but not in M-MDSCs. Taken together, our results show that the role of LRP6 in macrophages is differential depending on the inflammation microenvironment in the lung.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Lesão Pulmonar , Neoplasias Pulmonares , Pneumonia , Animais , Camundongos , Bleomicina , Inflamação/genética , Inflamação/patologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Pneumonia/patologia , Microambiente Tumoral
3.
Small ; 20(19): e2310873, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38279618

RESUMO

Ferroptosis, characterized by the induction of cell death via lipid peroxidation, has been actively studied over the last few years and has shown the potential to improve the efficacy of cancer nanomedicine in an iron-dependent manner. Radiation therapy, a common treatment method, has limitations as a stand-alone treatment due to radiation resistance and safety as it affects even normal tissues. Although ferroptosis-inducing drugs help alleviate radiation resistance, there are no safe ferroptosis-inducing drugs that can be considered for clinical application and are still in the research stage. Here, the effectiveness of combined treatment with radiotherapy with Fe and hyaluronic acid-based nanoparticles (FHA-NPs) to directly induce ferroptosis, considering the clinical applications is reported. Through the induction of ferroptosis by FHA-NPs and apoptosis by X-ray irradiation, the therapeutic efficiency of cancer is greatly improved both in vitro and in vivo. In addition, Monte Carlo simulations are performed to assess the physical interactions of the X-rays with the iron-oxide nanoparticle. The study provides a deeper understanding of the synergistic effect of ferroptosis and X-ray irradiation combination therapy. Furthermore, the study can serve as a valuable reference for elucidating the role and mechanisms of ferroptosis in radiation therapy.


Assuntos
Ferroptose , Nanopartículas , Ferroptose/efeitos dos fármacos , Humanos , Nanopartículas/química , Animais , Raios X , Linhagem Celular Tumoral , Camundongos , Apoptose/efeitos dos fármacos , Ácido Hialurônico/química , Terapia Combinada
4.
Am J Pathol ; 193(9): 1130-1142, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263344

RESUMO

Orchestration of inflammation and tissue repair processes is critical to maintaining homeostasis upon tissue injury. Tissue fibrosis is a pathological process characterized by aberrant accumulation of extracellular matrix proteins, such as collagen, upon injury. Dickkopf1 (DKK1) is a quintessential Wnt antagonist. The role of DKK1 in bleomycin (BLM)-induced lung injury and fibrosis model remains elusive. This study shows that BLM-induced lung injury markedly elevated DKK1 protein expressions in the lungs in mice, consistent with human pulmonary fibrosis patient lung tissues. The elevated DKK1 levels coincided with immune cell infiltration and collagen deposition. Notably, the reduced expression of DKK1 in Dkk1 hypomorphic doubleridge (Dkk1d/d) mice abrogated BLM-induced lung inflammation and fibrosis. Immune cell infiltration, collagen deposition, expression of profibrotic cytokine transforming growth factor ß1 (TGF-ß1), and extracellular matrix protein-producing myofibroblast marker α-smooth muscle actin (α-SMA) were reduced in Dkk1d/d mice. Consistent with these results, local DKK1 antibody administration after BLM-induced lung injury substantially decreased lung inflammation and fibrosis phenotypes. Taken together, these results demonstrate that DKK1 is a proinflammatory and profibrotic ligand that promotes inflammation and fibrosis upon BLM-induced lung injury, placing it as an attractive molecular target for dysregulated pulmonary inflammation and tissue repair.


Assuntos
Lesão Pulmonar , Pneumonia , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/patologia , Bleomicina/toxicidade , Lesão Pulmonar/patologia , Pulmão/patologia , Fator de Crescimento Transformador beta1/metabolismo , Colágeno/metabolismo , Pneumonia/metabolismo , Inflamação/patologia
5.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686097

RESUMO

Src is emerging as a promising target in triple-negative breast cancer (TNBC) treatment because it activates survival signaling linked to the epidermal growth factor receptor. In this study, the effect of calcium supply on Src degradation was investigated to confirm underlying mechanisms and anticancer effects targeting TNBC. MDA-MB-231 cells, the TNBC cell line, were used. Calcium supply was feasible through lactate calcium salt (CaLac), and the applicable calcium concentration was decided by changes in the viability with different doses of CaLac. Expression of signaling molecules mediated by calcium-dependent Src degradation was observed by Western blot analysis and immunocytochemistry, and the recovery of the signaling molecules was confirmed following calpeptin treatment. The anticancer effect was investigated in the xenograft animal model. Significant suppression of Src was induced by calcium supply, followed by a successive decrease in the expression of epithelial growth factor receptor, RAS, extracellular signal-regulated kinase, and nuclear factor kappa B. Then, the suppression of cyclooxygenase-2 contributed to a significant deactivation of the prostaglandin E2 receptors. These results suggest that calcium supply has the potential to reduce the risk of TNBC. However, as this study is at an early stage to determine clinical applicability, close consideration is needed.


Assuntos
Cálcio , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Cálcio/farmacologia , Cálcio/uso terapêutico , Receptores ErbB , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Quinases da Família src
6.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674667

RESUMO

Regular exercise, especially aerobic exercise, is beneficial for increasing serum high-density lipoprotein-cholesterol (HDL-C) levels in the general population. In addition to the HDL-C quantity, exercise enhances HDL functionality, antioxidants, and cholesterol efflux. On the other hand, the optimal intensity and frequency of exercise to increase HDL quantity and enhance HDL quality in middle-aged women need to be determined. The current study was designed to compare the changes in HDL quantity and quality among middle-aged women depending on exercise intensity, frequency, and duration; participants were divided into a sedentary group (group 1), a middle-intensity group (group 2), and a high-intensity group (group 3). There were no differences in anthropometric parameters among the groups, including blood pressure, muscle mass, and handgrip strength. Although there was no difference in serum total cholesterol (TC) among the groups, the serum HDL-C and apolipoprotein (apo)A-I levels remarkably increased to 17% and 12%, respectively, in group 3. Serum low-density lipoprotein-cholesterol (LDL-C), glucose, triglyceride, and the apo-B/apoA-I ratio were remarkably decreased in the exercise groups depending on the exercise intensity; group 3 showed 13%, 10%, and 45% lower LDL-C, glucose, and triglyceride (TG), respectively, than group 1. The hepatic and muscle damage parameter, aspartate aminotransferase (AST), was significantly decreased in the exercise groups, but high-sensitivity C-reactive protein (CRP), alanine aminotransferase (ALT), and γ-glutamyl transferase (γ-GTP) were similar in the three groups. In LDL, the particle size was increased 1.5-fold (p < 0.001), and the oxidation extent was decreased by 40% with a 23% lower TG content in group 3 than in group 1. In the exercise groups (groups 2 and 3), LDL showed the slowest electromobility with a distinct band intensity compared to the sedentary group (group 1). In HDL2, the particle size was 2.1-fold increased (p < 0.001) in the exercise group (group 3) with a 1.5-fold increase in TC content compared to that in group 1, as well as significantly enhanced antioxidant abilities, paraoxonase (PON) activity, and ferric ion reduction ability (FRA). In HDL3, the particle size was increased 1.2-fold with a 45% reduction in TG in group 3 compared to group 1. With increasing exercise intensity, apoA-I expression was increased in HDL2 and HDL3, and PON activity and FRA were enhanced (p < 0.001). In conclusion, regular exercise in middle-aged women is associated with the elevation of serum HDL-C and apoA-I with the enhancement of HDL quality and functionality and an increase in the TC content, particle size, and antioxidant abilities. With the reduction in TG and oxidized products in LDL and HDL, lipoproteins could have more anti-atherogenic properties through regular exercise in an intensity-dependent manner.


Assuntos
Antioxidantes , Lipoproteínas HDL , Pessoa de Meia-Idade , Humanos , Feminino , Lipoproteínas HDL/metabolismo , Antioxidantes/metabolismo , Apolipoproteína A-I , LDL-Colesterol , Tamanho da Partícula , Força da Mão , Apolipoproteínas , Triglicerídeos , Lipoproteínas HDL3 , Exercício Físico , HDL-Colesterol , Lipoproteínas LDL/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(47): 23426-23436, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685616

RESUMO

As a central feature of neuroinflammation, microglial dysfunction has been increasingly considered a causative factor of neurodegeneration implicating an intertwined pathology with amyloidogenic proteins. Herein, we report the smallest synthetic molecule (N,N'-diacetyl-p-phenylenediamine [DAPPD]), simply composed of a benzene ring with 2 acetamide groups at the para position, known to date as a chemical reagent that is able to promote the phagocytic aptitude of microglia and subsequently ameliorate cognitive defects. Based on our mechanistic investigations in vitro and in vivo, 1) the capability of DAPPD to restore microglial phagocytosis is responsible for diminishing the accumulation of amyloid-ß (Aß) species and significantly improving cognitive function in the brains of 2 types of Alzheimer's disease (AD) transgenic mice, and 2) the rectification of microglial function by DAPPD is a result of its ability to suppress the expression of NLRP3 inflammasome-associated proteins through its impact on the NF-κB pathway. Overall, our in vitro and in vivo investigations on efficacies and molecular-level mechanisms demonstrate the ability of DAPPD to regulate microglial function, suppress neuroinflammation, foster cerebral Aß clearance, and attenuate cognitive deficits in AD transgenic mouse models. Discovery of such antineuroinflammatory compounds signifies the potential in discovering effective therapeutic molecules against AD-associated neurodegeneration.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Cognição/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fagocitose/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Anti-Inflamatórios/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Microglia/fisiologia , Estrutura Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/genética , Fenilenodiaminas/química , Fenilenodiaminas/uso terapêutico , Presenilina-1/genética , Memória Espacial/efeitos dos fármacos
8.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955766

RESUMO

Light-to-moderate alcohol drinking is associated with a low incidence of cardiovascular disease (CVD) via an elevation of high-density lipoproteins-cholesterol (HDL-C), particularly with the short-term supplementation of alcohol. However, there is no information on the change in the HDL qualities and functionalities between non-drinkers and mild drinkers in the long-term consumption of alcohol. This study analyzed the lipid and lipoprotein profiles of middle-aged Korean female non-drinkers, mild-drinkers, and binge-drinkers, who consumed alcohol for at least 10 years. Unexpectedly, the serum levels of HDL-C and apolipoprotein A-I (apoA-I) were decreased significantly depending on the alcohol amount; the binge-drinker group showed 18% and 13% lower HDL-C (p = 0.011) and apoA-I levels (p = 0.024), respectively, than the non-drinker group. Triglyceride (TG) and oxidized species, malondialdehyde (MDA), and low-density lipoproteins (LDL) levels were significantly elevated in the drinker groups. Interestingly, the binge-drinker group showed 1.4-fold higher (p = 0.020) cholesterol contents in HDL2 and 1.7-fold higher (p < 0.001) TG contents in HDL3 than those of the non-drinker group. The mild-drinker group also showed higher TG contents in HDL3 (p = 0.032) than the non-drinker group, while cholesterol contents were similar in the HDL3 of all groups. Transmission electron microscopy (TEM) showed that the non-drinker group showed a more distinct and clear particle shape of the LDL and HDL image with a larger particle size than the drinker group. Electrophoresis of LDL showed that the drinker group had faster electromobility with a higher smear band intensity and aggregation in the loading position than the non-drinker group. The HDL level of binge drinkers showed the lowest paraoxonase activity, the highest glycated extent, and the most smear band intensity of HDL and apoA-I, indicating that HDL quality and functionality were impaired by alcohol consumption. In conclusion, long-term alcohol consumption in middle-aged women, even in small amounts, caused a significant decrease in the serum HDL-C and apoA-I with atherogenic changes in LDL and HDL, such as an increase in TG and MDA content with a loss of paraoxonase activity.


Assuntos
Apolipoproteína A-I , Aterosclerose , Consumo de Bebidas Alcoólicas , Arildialquilfosfatase , Aterosclerose/etiologia , Colesterol , HDL-Colesterol , Etanol , Feminino , Humanos , Pessoa de Meia-Idade , República da Coreia , Triglicerídeos
9.
Mol Pharm ; 18(1): 101-112, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33241681

RESUMO

We report a prodrug, Glu-DAPPD, to overcome the shortcomings of an anti-neuroinflammatory molecule, N,N'-diacetyl-p-phenylenediamine (DAPPD), in biological applicability for potential therapeutic applications. We suspect that Glu-DAPPD can release DAPPD through endogenous enzymatic bioconversion. Consequently, Glu-DAPPD exhibits in vivo efficacies in alleviating neuroinflammation, reducing amyloid-ß aggregate accumulation, and improving cognitive function in Alzheimer's disease transgenic mice. Our studies demonstrate that the prodrug approach is suitable and effective toward developing drug candidates against neurodegeneration.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Inflamação/tratamento farmacológico , Neurônios/efeitos dos fármacos , Pró-Fármacos/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/metabolismo , Fenilenodiaminas/farmacologia
10.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805293

RESUMO

Genome-wide studies focusing on elucidating the effects on cancer progression have enabled the consequent identification of a distinct subpopulation of pancreatic cancer cells with unstable genomic characteristics. Based on this background, deleterious changes by poly (adenosine diphosphate (ADP)-ribose) polymerase-1 (PARP)-1 have been concentrated in oncology. One of the critical functions of PARP-1 is the response to DNA damage, which plays a pivotal role in DNA repair in cancers. PARP-1 also has widespread functions that are essential for the survival and growth of cancer cells. It regulates oxidative stress in mitochondria through the regulation of superoxide and oxidation. PARP-1 is in charge of regulating mitosis, which is a crucial role in tumorigenesis and remodels histones and chromatin enzymes related to transcriptional regulation, causing alterations in epigenetic markers and chromatin structure. Given the significance of these processes, it can be understood that these processes in cancer cells are at the frontline of the pathogenetic changes required for cancer cell survival, and these contributions can result in malignant transformation. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 in pancreatic cancer related to the aforementioned roles, along with the summary of recent approaches with PARP-1 inhibition in clinical studies targeting pancreatic cancer. This understanding could help to embrace the importance of targeting PARP-1 in the treatment of pancreatic cancer, which may present the potential to find out a variety of research topics that can be both challenged clinically and non-clinically.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Dano ao DNA , Reparo do DNA , Humanos , Estresse Oxidativo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transcrição Gênica
11.
Mol Ther ; 27(8): 1507-1526, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31138511

RESUMO

Gliosis in Niemann-Pick type C (NP-C) disease is characterized by marked changes in microglia and astrocytes. However, the gliosis onset and progression in NP-C has not been systematically studied, nor has the mechanism underlying this finding. Here, we found early gliosis in the subventricular zone (SVZ) of NP-C mice. Neural progenitor damage by Npc1 mutation suppressed vascular endothelial growth factor (VEGF) expression and further induced microglia activation followed by astrogliosis. Interestingly, excessive astrogliosis in the SVZ induced neural progenitor retention and/or migration into thalamus via astrocyte-derived VEGF, resulting in acceleration of thalamic and cortical gliosis through thalamo-cortical pathways. Transplantation of VEGF-overexpressing neural stem cells into the SVZ improved whole-brain pathology of NP-C mice. Overall, our data provide a new pathological perspective on NP-C neural pathology, revealing abnormalities in the subventricular-thalamo-cortical circuit of NP-C mouse brain and highlighting the importance of the SVZ microenvironment as a therapeutic target for NP-C disease.


Assuntos
Córtex Cerebral/metabolismo , Ventrículos Laterais/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Transdução de Sinais , Tálamo/metabolismo , Animais , Astrócitos/metabolismo , Biomarcadores , Movimento Celular , Modelos Animais de Doenças , Gliose/etiologia , Gliose/metabolismo , Gliose/patologia , Camundongos , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Doença de Niemann-Pick Tipo C/etiologia , Doença de Niemann-Pick Tipo C/patologia , Doença de Niemann-Pick Tipo C/terapia , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Mediators Inflamm ; 2020: 3572809, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714090

RESUMO

The objective of this study was to evaluate the effects of peptides derived from synbiotics on improving inflammatory bowel disease (IBD). Five-week-old male C57BL/6 mice were administered with dextran sulfate sodium (DSS) via drinking water for seven days to induce IBD (IBD group). The mice in the IBD group were orally administered with PBS (IBD-PBS-positive control), Lactobacillus gasseri 505 (IBD-Pro), fermented powder of CT extract with L. gasseri 505 (IBD-Syn), ß-casein: LSQSKVLPVPQKAVPYPQRDMP (IBD-Pep 1), or α s2-casein: VYQHQKAMKPWIQPKTKVIPYVRYL (IBD-Pep 2) (both peptides are present in the synbiotics) for four more days while inducing IBD. To confirm IBD induction, the weights of the animals and the disease activity index (DAI) scores were evaluated once every two days. Following treatment of probiotics, synbiotics, or peptides for 11 days, the mice were sacrificed. The length of the small and large intestines was measured. The expression of the proinflammatory cytokines IL-1ß, IL-6, TNF-α, and COX-2 in the large intestine was measured. Large intestine tissue was fixed in 10% formalin and stained with hematoxylin and eosin for histopathological analysis. The body weights decreased and DAI scores increased in the IBD group, but the DAI scores were lower in the IBD-Pep 2 group than those in the IBD group treated with PBS, Pro, Syn, or Pep 1. The lengths of the small and large intestines were shorter in the IBD group than in the group without IBD, and the expression levels of the proinflammatory cytokines were lower (p < 0.05) in the IBD-Pep 2 group than those in the IBD-PBS-positive control group. In addition, histopathological analysis showed that IBD was ameliorated in the Pep 2-treated group. These results indicate that Pep 2 derived from α s2-casein was effective in alleviating IBD-associated inflammation. Thus, we showed that these peptides can alleviate inflammation in IBD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Lactobacillus gasseri/fisiologia , Moraceae/química , Animais , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Fermentação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simbióticos , Fator de Necrose Tumoral alfa/metabolismo
13.
J Clin Biochem Nutr ; 67(1): 89-101, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32801474

RESUMO

Gastric stress-related mucosal disease (SRMD) presented from superficial gastritis to deep ulceration consequent to insufficient perfusion, ischemia, and oxidative stress. Though pharmacologic interventions to optimize tissue perfusion or to enhance defensive mechanism are essential, limited clinical outcome necessitates strong acid suppressors or natural agents. Under the hypothesis that Dolichos lablab L. (NKM 23-1) can enhance defense against SRMD, water immersion restraint stress (WIRS) were imposed to rats and additional groups pretreated with differing doses of NKM 23-1 were monitored. On gross and microscopic evaluation, they significantly rescued SRMD (p<0.01). The levels of inflammatory mediators such as IL-18, IL-1ß, IL-8, iNOS, TNF-α, caspase-1, NOXs as well as MMPs accompanied with NF-κB p50 activation were all significantly increased in WIRS, but their levels were significantly decreased in Groups pretreated with NKM 23-1. WIRS significantly increased apoptosis, but significantly decreased with NKM 23-1 accompanied with significantly increased levels of cyclin D/E and HSP70/HSP27. Gastric mucin was significantly preserved in Groups pretreated with NKM 23-1, while depleted in WIRS, accompanied with increased expressions of Muc5A. Gastric levels of HO-1 and NQO1 were significantly increased in Group treated with NKM 23-1 with transcriptional activation of Nrf2. Conclusively, preemptive intake of NKM 23-1 significantly rescued SRMD.

14.
EMBO J ; 34(12): 1648-60, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25916827

RESUMO

Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.


Assuntos
Células da Medula Óssea/metabolismo , Medula Óssea/fisiologia , Microambiente Celular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Neuropeptídeo Y/metabolismo , Análise de Variância , Animais , Apoptose/fisiologia , Células Endoteliais/fisiologia , Citometria de Fluxo , Imunofluorescência , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Knockout , Neuropeptídeo Y/deficiência , Sistema Nervoso Simpático/citologia
15.
Reprod Domest Anim ; 54(11): 1497-1500, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442342

RESUMO

A previous study found that undifferentiated porcine spermatogonial stem cells (SSCs) did not adhere to tenascin C, indicating that the integrin α9 and ß1 subunits are inactive on the surface of porcine SSCs. However, that study used recombinant tenascin C without FNIII-like repeats. Therefore, this study re-evaluated the existence of integrin α9 ß1 actively functioning on the plasma membrane of porcine SSCs using full-length native tenascin C with FNIII-like repeats. The localization and function of the integrin heterodimer were confirmed using immunocytochemistry, attachment and antibody inhibition assays. In undifferentiated porcine SSCs with integrin α9 ß1 on the cell surface, adhesion to native tenascin C was significantly higher compared with cells lacking native tenascin C and functional blocking of integrin α9 ß1 significantly inhibited the attachment to native tenascin C compared with no functional blocking. Accordingly, we confirmed that the integrin α9 and ß1 subunits function as an active heterodimer on the surface of porcine SSCs in the undifferentiated state.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Adesão Celular/fisiologia , Integrinas/metabolismo , Células-Tronco Germinativas Adultas/citologia , Animais , Membrana Celular/metabolismo , Células Cultivadas , Integrinas/fisiologia , Masculino , Espermatogônias/metabolismo , Sus scrofa , Tenascina
16.
Stem Cells ; 34(8): 2145-56, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27090492

RESUMO

Hematopoietic stem/progenitor cell (HSPC) mobilization is an essential homeostatic process regulated by the interaction of cellular and molecular components in bone marrow niches. It has been shown by others that neurotransmitters released from the sympathetic nervous system regulate HSPC egress from bone marrow to peripheral blood. In this study, we investigate the functional role of neuropeptide Y (NPY) on this process. NPY deficient mice had significantly impaired HSPC mobilization due to increased expression of HSPC maintenance factors by reduction of matrix metalloproteinase-9 (MMP-9) activity in bone marrow. Pharmacological or endogenous elevation of NPY led to decrease of HSPC maintenance factors expression by activating MMP-9 in osteoblasts, resulting in HSPC mobilization. Mice in which the Y1 receptor was deleted in osteoblasts did not exhibit HSPC mobilization by NPY. Furthermore, NPY treatment in ovariectomized mice caused reduction of bone loss due to HSPC mobilization. These results suggest a new role of NPY on HSPC mobilization, as well as the potential therapeutic application of this neuropeptide for stem cell-based therapy. Stem Cells 2016;34:2145-2156.


Assuntos
Mobilização de Células-Tronco Hematopoéticas , Metaloproteinase 9 da Matriz/metabolismo , Neuropeptídeo Y/metabolismo , Osteoblastos/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Osso e Ossos/metabolismo , Quimiotaxia , Feminino , Homeostase , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/deficiência , Osteoblastos/citologia , Osteoblastos/enzimologia , Receptores CXCR4/metabolismo
17.
Nutr Cancer ; 69(4): 663-673, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28353361

RESUMO

Methionine (Met) is involved in one-carbon de novo nucleotide synthesis and is an essential amino acid for cell survival. The impact of lactate calcium salt (CaLa) on the Met metabolism was investigated to evaluate the enhanced antitumor effect of methotrexate (MTX) on colorectal cancer (CRC) cells. Met dependency relating to homocysteine (Hcy) and betaine was investigated in human CRC cells (HCT-116 and HT-29) using a viability assay and liquid chromatography-mass spectrometry. Expression of betaine transporter-1 (BGT-1) following treatment with MTX alone or with CaLa was determined by Western blot. Enhanced antitumor effect due to malfunction of Met synthesis was confirmed. CRC cell viability decreased in Met-restricted medium, but was maintained after Hcy and betaine treatment while overcoming Met restriction. BGT-1 expression was downregulated following the treatment of dose-increased CaLa, whereas there was no effect on BGT-1 expression after MTX treatment. CaLa in combination with MTX induced reduced Met synthesis when CRC cell viability was reduced. The results indicated that CaLa-mediated BGT-1 downregulation inhibits Met synthesis by disrupting betaine homeostasis. CaLa raised the antitumor effect of MTX via secondary role in the inhibition of the de novo nucleotide synthesis. Combination therapy of MTX and CaLa could maximize the effectiveness of CRC treatment.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Metionina/metabolismo , Betaína/administração & dosagem , Betaína/metabolismo , Betaína/farmacologia , Compostos de Cálcio/administração & dosagem , Compostos de Cálcio/farmacologia , Proteínas de Transporte/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas da Membrana Plasmática de Transporte de GABA , Células HCT116/efeitos dos fármacos , Células HT29/efeitos dos fármacos , Humanos , Lactatos/administração & dosagem , Lactatos/farmacologia , Metotrexato/administração & dosagem , Metotrexato/farmacologia , Terapia de Alvo Molecular
18.
Cell Biol Int ; 41(12): 1316-1324, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28816413

RESUMO

Generally, self-renewal of spermatogonial stem cells (SSCs) is maintained in vivo in a three-dimensional (3D) microenvironment consisting of the seminiferous tubule basement membrane, indicating the importance of the 3D microenvironment for in vitro culture of SSCs. Here, we report a 3D culture microenvironment that effectively maintains porcine SSC self-renewal during culture. Porcine SSCs were cultured in an agarose-based 3D hydrogel and in 2D culture plates either with or without feeder cells. Subsequently, the effects of 3D culture on the maintenance of undifferentiated SSCs were identified by analyzing cell colony formation and morphology, AP activity, and transcriptional and translational regulation of self-renewal-related genes and the effects on proliferation by analyzing cell viability and single cell-derived colony number. The 3D culture microenvironment constructed using a 0.2% (w/v) agarose-based 3D hydrogel showed the strongest maintenance of porcine SSC self-renewal and induced significant improvements in proliferation compared with 2D culture microenvironments. These results demonstrate that self-renewal of porcine SSCs can be maintained more effectively in a 3D than in a 2D culture microenvironment. Moreover, this will play a significant role in developing novel culture systems for SSCs derived from diverse species in the future, which will contribute to SSC-related research.


Assuntos
Células-Tronco Germinativas Adultas/citologia , Células-Tronco Germinativas Adultas/patologia , Técnicas de Cultura de Células/métodos , Células-Tronco Germinativas Adultas/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Masculino , Camundongos , Túbulos Seminíferos , Espermatogênese/fisiologia , Espermatogônias/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Suínos
19.
J Phys Ther Sci ; 29(7): 1208-1211, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28744049

RESUMO

[Purpose] The purpose of this study was to identify the effects of task-oriented training with altered somatosensory input on the balance ability of chronic stroke patients. [Subjects and Methods] Twenty-six subjects with chronic stroke were divided into an experimental group (n=14) and a control group (n=12). Both groups attended physical therapy sessions five times a week for four weeks. The experimental group performed additional, task-oriented training with altered sensory input three times a week for four weeks. Limit-of-stability tests were conducted before and after the intervention. In addition, all subjects were evaluated using the Berg Balance Scale (BBS) and Korean Activities-Specific Balance Confidence Scale before and after the intervention. [Results] There was a significant interaction between time and group on BBS scores, on the total surface area of the limit of stability, and on the surface area of the limit of stability of the affected side. However, an analysis of covariance in which the baseline values of each variable served as the covariates showed that only the post-intervention BBS score of the experimental group was significantly higher than that of the control group. [Conclusion] Task-oriented training with altered somatosensory input can improve functional balance in patients with chronic stroke.

20.
Mol Pharm ; 13(7): 2204-13, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27163860

RESUMO

Invasion and metastasis of cancer directly related to human death have been associated with interactions among many different types of cells and three-dimensional (3D) tissue matrices. Precise mechanisms related to cancer invasion and metastasis still remain unknown due to their complexities. Development of tumor microenvironment (TME)-mimicking system could play a key role in understanding cancer environments and in elucidating the relating phenomena and their driving forces. Here we report a facile and novel platform of 3D cancer cell-clusters using human adipose-derived mesenchymal stem cells (hASCs) and breast cancer cells (MDA-MB-231) within a collagen gel matrix to show cancer invasion in the cell and extracellular matrix (ECM). Both clusters A (hASC only) and AC (hASC and MDA-MB-231) exhibited different behaviors and expressions of migration and invasion, as observed by the relating markers such as fibronectin, α-SMA, and CXCR4. hASCs showed a protrusive migration from a cluster center, whereas MDA-MB-231 spread out radially followed by hASC migration. Finally, the effect of matrix was further discussed by varying collagen gel densities. The new biomimetic system of 3D cancer clusters developed here has the potential to be utilized for research on migration and invasion of cancer cells in extracellular matrices.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Células-Tronco Mesenquimais/patologia , Invasividade Neoplásica/patologia , Biomimética/métodos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Colágeno/metabolismo , Matriz Extracelular/patologia , Feminino , Fibronectinas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA