Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Cell ; 161(3): 595-609, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25892225

RESUMO

Organisms must be able to respond to low oxygen in a number of homeostatic and pathological contexts. Regulation of hypoxic responses via the hypoxia-inducible factor (HIF) is well established, but evidence indicates that other, HIF-independent mechanisms are also involved. Here, we report a hypoxic response that depends on the accumulation of lactate, a metabolite whose production increases in hypoxic conditions. We find that the NDRG3 protein is degraded in a PHD2/VHL-dependent manner in normoxia but is protected from destruction by binding to lactate that accumulates under hypoxia. The stabilized NDRG3 protein binds c-Raf to mediate hypoxia-induced activation of Raf-ERK pathway, promoting angiogenesis and cell growth. Inhibiting cellular lactate production abolishes the NDRG3-mediated hypoxia responses. Our study, therefore, elucidates the molecular basis for lactate-induced hypoxia signaling, which can be exploited for the development of therapies targeting hypoxia-induced diseases.


Assuntos
Hipóxia/metabolismo , Ácido Láctico/metabolismo , Hipóxia Celular , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Oxigênio/metabolismo , Ligação Proteica , Quinases raf/metabolismo
2.
Nature ; 566(7743): 254-258, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30728500

RESUMO

Osteoarthritis-the most common form of age-related degenerative whole-joint disease1-is primarily characterized by cartilage destruction, as well as by synovial inflammation, osteophyte formation and subchondral bone remodelling2,3. However, the molecular mechanisms that underlie the pathogenesis of osteoarthritis are largely unknown. Although osteoarthritis is currently considered to be associated with metabolic disorders, direct evidence for this is lacking, and the role of cholesterol metabolism in the pathogenesis of osteoarthritis has not been fully investigated4-6. Various types of cholesterol hydroxylases contribute to cholesterol metabolism in extrahepatic tissues by converting cellular cholesterol to circulating oxysterols, which regulate diverse biological processes7,8. Here we show that the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes is a crucial catabolic regulator of the pathogenesis of osteoarthritis. Osteoarthritic chondrocytes had increased levels of cholesterol because of enhanced uptake, upregulation of cholesterol hydroxylases (CH25H and CYP7B1) and increased production of oxysterol metabolites. Adenoviral overexpression of CH25H or CYP7B1 in mouse joint tissues caused experimental osteoarthritis, whereas knockout or knockdown of these hydroxylases abrogated the pathogenesis of osteoarthritis. Moreover, retinoic acid-related orphan receptor alpha (RORα) was found to mediate the induction of osteoarthritis by alterations in cholesterol metabolism. These results indicate that osteoarthritis is a disease associated with metabolic disorders and suggest that targeting the CH25H-CYP7B1-RORα axis of cholesterol metabolism may provide a therapeutic avenue for treating osteoarthritis.


Assuntos
Colesterol/metabolismo , Família 7 do Citocromo P450/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Osteoartrite/metabolismo , Esteroide Hidroxilases/metabolismo , Animais , Transporte Biológico , Condrócitos/enzimologia , Condrócitos/metabolismo , Masculino , Camundongos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Osteoartrite/enzimologia , Osteoartrite/patologia , Oxisteróis/metabolismo , Esteroide Hidroxilases/deficiência , Regulação para Cima
3.
Nucleic Acids Res ; 49(10): 5760-5778, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34037780

RESUMO

Alternative pre-mRNA splicing is a critical step to generate multiple transcripts, thereby dramatically enlarging the proteomic diversity. Thus, a common feature of most alternative splicing factor knockout models is lethality. However, little is known about lineage-specific alternative splicing regulators in a physiological setting. Here, we report that NSrp70 is selectively expressed in developing thymocytes, highest at the double-positive (DP) stage. Global splicing and transcriptional profiling revealed that NSrp70 regulates the cell cycle and survival of thymocytes by controlling the alternative processing of various RNA splicing factors, including the oncogenic splicing factor SRSF1. A conditional-knockout of Nsrp1 (NSrp70-cKO) using CD4Cre developed severe defects in T cell maturation to single-positive thymocytes, due to insufficient T cell receptor (TCR) signaling and uncontrolled cell growth and death. Mice displayed severe peripheral lymphopenia and could not optimally control tumor growth. This study establishes a model to address the function of lymphoid-lineage-specific alternative splicing factor NSrp70 in a thymic T cell developmental pathway.


Assuntos
Processamento Alternativo/genética , Carcinogênese/metabolismo , Desenvolvimento Embrionário/genética , Hematopoese/genética , Melanoma/metabolismo , Timócitos/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose/genética , Carcinogênese/genética , Proliferação de Células/genética , Genômica , Células HEK293 , Humanos , Lectinas Tipo C/metabolismo , Linfopenia/genética , Linfopenia/metabolismo , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Antígenos de Linfócitos T/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Timo/embriologia , Timo/metabolismo
4.
J Neurosci ; 41(24): 5138-5156, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33972400

RESUMO

Protein aggregation can induce explicit neurotoxic events that trigger a number of presently untreatable neurodegenerative disorders. Chaperones, on the other hand, play a neuroprotective role because of their ability to unfold and refold abnormal proteins. The progressive nature of neurotoxic events makes it important to discover endogenous factors that affect pathologic and molecular phenotypes of neurodegeneration in animal models. Here, we identified microtubule-associated protein tau, and chaperones Hsp70 (heat shock protein 70) and DNAJA1 (DJ2) as endogenous substrates of cereblon (CRBN), a substrate-recruiting subunit of cullin4-RING-E3-ligase. This recruitment results in ubiquitin-mediated degradation of tau, Hsp70, and DJ2. Knocking out CRBN enhances the chaperone activity of DJ2, resulting in decreased phosphorylation and aggregation of tau, improved association of tau with microtubules, and reduced accumulation of pathologic tau across brain. Functionally abundant DJ2 could prevent tau aggregation induced by various factors like okadaic acid and heparin. Depletion of CRBN also decreases the activity of tau-kinases including GSK3α/ß, ERK, and p38. Intriguingly, we found a high expression of CRBN and low levels of DJ2 in neuronal tissues of 5XFAD and APP knock-in male mouse models of Alzheimer's disease. This implies that CRBN-mediated DJ2/Hsp70 pathway may be compromised in neurodegeneration. Being one of the primary pathogenic events, elevated CRBN can be a contributing factor for tauopathies. Our data provide a functional link between CRBN and DJ2/Hsp70 chaperone machinery in abolishing the cytotoxicity of aggregation-prone tau and suggest that Crbn-/- mice serve as an animal model of resistance against tauopathies for further exploration of the molecular mechanisms of neurodegeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Tauopatias/patologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas tau/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Degeneração Neural , Tauopatias/metabolismo
5.
Diabetes Obes Metab ; 24(1): 50-60, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34491605

RESUMO

AIM: To develop more effective and long-lasting antiobesity and antidiabetic therapeutics by employing novel chemical modifications of glucagon-like peptide-1 receptor (GLP-1R) agonists. METHODS: We constructed novel unimolecular dual agonists of GLP-1R and glucagon receptor prepared by linking sEx-4 and native glucagon (GCG) via lysine or triazole [sEx4-GCG(K) and sEx4-GCG(T), respectively] and evaluated their antiobesity and antidiabetic efficacy in the diabetic and obese mouse model. RESULTS: Both sEx4-GCG(K) and sEx4-GCG(T) showed the beneficial metabolic effects of GLP-1 and glucagon: they promoted weight loss and ameliorated insulin resistance and hepatic steatosis. They also increased thermogenesis in brown adipose tissue, and lipolysis and ß-oxidation in white adipose tissue, with concomitant suppression of lipogenesis. Furthermore, both dual agonists activated the 5'-AMP-activated protein kinase signalling pathway and prevented palmitate-induced oxidative stress in skeletal muscle cells. CONCLUSION: Through their complementary dual agonism, sEx4-GCG(T) and sEx4-GCG(K) induce more marked weight loss and metabolic improvements than conventional agonists, and could be developed as novel therapeutic agents for the treatment of obesity and associated metabolic disorders in humans.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucagon , Animais , Glucagon/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Camundongos , Receptores de Glucagon/metabolismo , Termogênese
6.
Circ Res ; 124(9): e63-e80, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30786847

RESUMO

RATIONALE: SERCA2a, sarco-endoplasmic reticulum Ca2+-ATPase, is a critical determinant of cardiac function. Reduced level and activity of SERCA2a are major features of heart failure. Accordingly, intensive efforts have been made to develop efficient modalities for SERCA2a activation. We showed that the activity of SERCA2a is enhanced by post-translational modification with SUMO1 (small ubiquitin-like modifier 1). However, the roles of other post-translational modifications on SERCA2a are still unknown. OBJECTIVE: In this study, we aim to assess the role of lysine acetylation on SERCA2a function and determine whether inhibition of lysine acetylation can improve cardiac function in the setting of heart failure. METHODS AND RESULTS: The acetylation of SERCA2a was significantly increased in failing hearts of humans, mice, and pigs, which is associated with the reduced level of SIRT1 (sirtuin 1), a class III histone deacetylase. Downregulation of SIRT1 increased the SERCA2a acetylation, which in turn led to SERCA2a dysfunction and cardiac defects at baseline. In contrast, pharmacological activation of SIRT1 reduced the SERCA2a acetylation, which was accompanied by recovery of SERCA2a function and cardiac defects in failing hearts. Lysine 492 (K492) was of critical importance for the regulation of SERCA2a activity via acetylation. Acetylation at K492 significantly reduced the SERCA2a activity, presumably through interfering with the binding of ATP to SERCA2a. In failing hearts, acetylation at K492 appeared to be mediated by p300 (histone acetyltransferase p300), a histone acetyltransferase. CONCLUSIONS: These results indicate that acetylation/deacetylation at K492, which is regulated by SIRT1 and p300, is critical for the regulation of SERCA2a activity in hearts. Pharmacological activation of SIRT1 can restore SERCA2a activity through deacetylation at K492. These findings might provide a novel strategy for the treatment of heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sirtuína 1/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteína p300 Associada a E1A/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Humanos , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Processamento de Proteína Pós-Traducional , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Sirtuína 1/genética , Suínos
7.
J Cell Physiol ; 235(5): 4494-4507, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31637720

RESUMO

Cancer-associated fibroblasts (CAFs) in the tumor microenvironment play major roles in supporting cancer progression. A previous report showed that SPIN90 downregulation is correlated with CAF activation and that SPIN90-deficient CAFs promote breast cancer progression. However, the mechanisms that mediate cancer-stroma interaction and how such interactions regulate cancer progression are not well understood. Here, we show that extra domain A (EDA)-containing fibronectin (FN), FN(+)EDA, produced by mouse embryonic fibroblasts (MEFs) derived from Spin90-knockout (KO) mice increases their own myofibroblast differentiation, which facilitates breast cancer progression. Increased FN(+)EDA in Spin90-KO MEFs promoted fibril formation in the extracellular matrix (ECM) and specifically interacted with integrin α4ß1 as the mediating receptor. Moreover, FN(+)EDA expression by Spin90-KO MEFs increased proliferation, migration, and invasion of breast cancer cells. Irigenin, a specific inhibitor of the interaction between integrin α4ß1 and FN(+)EDA, significantly blocked the effects of FN(+)EDA, such as fibril formation by Spin90-KO MEFs and proliferation, migration, and invasion of breast cancer cells. In orthotopic breast cancer mouse models, irigenin injection remarkably reduced tumor growth and lung metastases. It was supported by that FN(+)EDA in assembled fibrils was accumulated in cancer stroma of human breast cancer patients in which SPIN90 expression was downregulated. Our data suggest that SPIN90 downregulation increases FN(+)EDA and promotes ECM stiffening in breast cancer stroma through an assembly of long FN(+)EDA-rich fibrils; moreover, engagement of the Integrin α4ß1 receptor facilitates breast cancer progression. Inhibitory effects of irigenin on tumor growth and metastasis suggest the potential of this agent as an anticancer therapeutic.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Fibronectinas/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Feminino , Fibronectinas/genética , Deleção de Genes , Humanos , Neoplasias Mamárias Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Neoplasias Experimentais , Proteínas do Tecido Nervoso/genética , Regulação para Cima
8.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026308

RESUMO

Spermatogenesis is a tightly regulated process involving germ cell-specific and germ cell-predominant genes. Here we investigate a novel germ cell-specific gene, Spatc1l (spermatogenesis and centriole associated 1 like). Expression analyses show that SPATC1L is expressed in mouse and human testes. We find that mouse SPATC1L localizes to the neck region in testicular sperm. Moreover, SPATC1L associates with the regulatory subunit of protein kinase A (PKA). Using CRISPR/Cas9-mediated genome engineering, we generate mice lacking SPATC1L. Disruption of Spatc1l in mice leads to male sterility owing to separation of sperm heads from tails. The lack of SPATC1L is associated with a reduction in PKA activity in testicular sperm, and we identify capping protein muscle Z-line beta as a candidate target of phosphorylation by PKA in testis. Taken together, our results implicate the SPATC1L-PKA complex in maintaining the stability of the sperm head-tail junction, thereby revealing a new molecular basis for sperm head-tail integrity.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/fisiologia , Cabeça do Espermatozoide/fisiologia , Cauda do Espermatozoide/fisiologia , Espermatogênese , Citoesqueleto de Actina/metabolismo , Animais , Proteína de Capeamento de Actina CapZ/metabolismo , Proteínas de Ciclo Celular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/genética , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Cabeça do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/metabolismo
9.
J Immunol ; 200(5): 1865-1875, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29374078

RESUMO

IL-10 is a pleiotropic cytokine with multifaceted functions in establishing immune homeostasis. Although expressed by Th1 and Th2 cells, conventional Th1 cells produce marginal levels of IL-10 compared with their Th2 counterparts. In this study, we investigated the epigenetic mechanisms of Il-10 gene expression in Th1 cells. Bioinformatics EMBOSS CpG plot analysis and bisulfite pyrosequencing revealed three CpG DNA methylation sites in the Il-10 gene locus. Progressive DNA methylation at all of the CpG regions of interest (ROIs) established a repressive program of Il-10 gene expression in Th1 cells. Interestingly, Th1 cells treated with IL-12 and IL-27 cytokines, thereby mimicking a chronic inflammatory condition in vivo, displayed a significant increase in IL-10 production that was accompanied by selective DNA demethylation at ROI 3 located in intron 3. IL-10-producing T cells isolated from lymphocytic choriomeningitis virus-infected mice also showed enhanced DNA demethylation at ROI 3. Binding of STAT1 and STAT3 to demethylated ROI 3 enhanced IL-10 expression in an IL-12/IL-27-dependent manner. Accordingly, CD4+ T cells isolated from STAT1- or STAT3-knockout mice were significantly defective in IL-10 production. Our data suggest that, although stably maintained DNA methylation at the promoter may repress IL-10 expression in Th1 cells, locus-specific reversible DNA demethylation may serve as a threshold platform to control transient Il-10 gene expression.


Assuntos
Metilação de DNA/genética , Interleucina-10/genética , Células Th1/fisiologia , Animais , Linfócitos T CD4-Positivos/fisiologia , Linhagem Celular , Ilhas de CpG/genética , Epigênese Genética/genética , Células HEK293 , Humanos , Interleucina-27/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT3/genética , Células Th2/fisiologia
10.
Biochem Biophys Res Commun ; 514(2): 497-502, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31056261

RESUMO

Cationic antimicrobial peptides (CAMPs) are important antibiotics because they possess a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including those resistant to traditional antibiotics. The cyclic peptide bactenecin is a 12-amino acid CAMP that contains one intramolecular disulfide bond. To improve the antibacterial activity of bactenecin, we designed and synthesized several bactenecin analogs by applying multiple approaches, including amino acid substitution, use of the d-enantiomeric form, and lipidation. Among the synthetic analogs, d-enantiomeric bactenecin conjugated to capric acid, which we named dBacK-(cap), exhibited a significantly enhanced antibacterial spectrum with MIC values ranging from 1 to 8 µM against both Gram-positive and Gram-negative bacteria, including some drug-resistant bacteria. Upon exposure to dBacK-(cap), S. aureus cells were killed within 1 h at the MIC value, but full inactivation of E. coli required over 2 h. These results indicate that covalent addition of a d-amino acid and a fatty acid to bactenecin is the most effective approach for enhancing its antibacterial activity.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Antibacterianos/síntese química , Antibacterianos/química , Permeabilidade da Membrana Celular , Desenho de Fármacos , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/ultraestrutura , Bactérias Gram-Positivas/citologia , Bactérias Gram-Positivas/ultraestrutura , Cinética , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química
11.
BMC Cancer ; 19(1): 1113, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727003

RESUMO

Following publication of the original article [1], the authors have re-evaluated the authorship for this article. The updated author group is.

12.
Artigo em Inglês | MEDLINE | ID: mdl-30048702

RESUMO

To determine fundamental characteristics of pathological cardiac hypertrophy, protein expression profiles in two widely accepted models of cardiac hypertrophy (swimming-trained mouse for physiological hypertrophy and pressure-overload-induced mouse for pathological hypertrophy) were compared using a label-free quantitative proteomics approach. Among 3955 proteins (19,235 peptides, false-discovery rate < 0.01) identified in these models, 486 were differentially expressed with a log2 fold difference ≥ 0.58, or were detected in only one hypertrophy model (each protein from 4 technical replicates, p < .05). Analysis of gene ontology biological processes and KEGG pathways identified cellular processes enriched in one or both hypertrophy models. Processes unique to pathological hypertrophy were compared with processes previously identified in cardiac-hypertrophy models. Individual proteins with differential expression in processes unique to pathological hypertrophy were further confirmed using the results of previous targeted functional analysis studies. Using a proteogenomic approach combining transcriptomic and proteomic analyses, similar patterns of differential expression were observed for 23 proteins and corresponding genes associated with pathological hypertrophy. A total of 11 proteins were selected as early-stage pathological-hypertrophy biomarker candidates, and the results of western blotting for five of these proteins in independent samples confirmed the patterns of differential expression in mouse models of pathological and physiological cardiac hypertrophy.

13.
J Cell Sci ; 128(9): 1848-61, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25795301

RESUMO

The 5-hydroxytryptamine (5-HT, also known as serotonin) subtype 6 receptor (5-HT6R, also known as HTR6) plays roles in cognition, anxiety and learning and memory disorders, yet new details concerning its regulation remain poorly understood. In this study, we found that 5-HT6R directly interacted with SNX14 and that this interaction dramatically increased internalization and degradation of 5-HT6R. Knockdown of endogenous SNX14 had the opposite effect. SNX14 is highly expressed in the brain and contains a putative regulator of G-protein signaling (RGS) domain. Although its RGS domain was found to be non-functional as a GTPase activator for Gαs, we found that it specifically bound to and sequestered Gαs, thus inhibiting downstream cAMP production. We further found that protein kinase A (PKA)-mediated phosphorylation of SNX14 inhibited its binding to Gαs and diverted SNX14 from Gαs binding to 5-HT6R binding, thus facilitating the endocytic degradation of the receptor. Therefore, our results suggest that SNX14 is a dual endogenous negative regulator in 5-HT6R-mediated signaling pathway, modulating both signaling and trafficking of 5-HT6R.


Assuntos
Neurônios/metabolismo , Receptores de Serotonina/metabolismo , Transdução de Sinais , Nexinas de Classificação/metabolismo , Animais , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/metabolismo , Endocitose , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Ratos
14.
Biochem Biophys Res Commun ; 482(1): 170-175, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838299

RESUMO

To analyze structural features of ω-Aga IVA, a gating modifier toxin from spider venom, we here investigated the NMR solution structure of ω-Aga IVA within DPC micelles. Under those conditions, the Cys-rich central region of ω-Aga IVA still retains the inhibitor Cys knot motif with three short antiparallel ß-strands seen in water. However, 15N HSQC spectra of ω-Aga IVA within micelles revealed that there are radical changes to the toxin's C-terminal tail and several loops upon binding to micelles. The C-terminal tail of ω-Aga IVA appears to assume a ß-turn like conformation within micelles, though it is disordered in water. Whole-cell patch clamp studies with several ω-Aga IVA analogs indicate that both the hydrophobic C-terminal tail and an Arg patch in the core region of ω-Aga IVA are critical for Cav2.1 blockade. These results suggest that the membrane environment stabilizes the structure of the toxin, enabling it to act in a manner similar to other gating modifier toxins, though its mode of interaction with the membrane and the channel is unique.


Assuntos
Canais de Cálcio Tipo N/química , Canais de Cálcio Tipo N/ultraestrutura , Membrana Celular/química , Bicamadas Lipídicas/química , Células de Purkinje/química , ômega-Agatoxina IVA/química , Animais , Sítios de Ligação , Conformação Molecular , Ligação Proteica , Ratos , Ratos Wistar , Relação Estrutura-Atividade
15.
EMBO Rep ; 16(10): 1318-33, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26341627

RESUMO

The mitochondrial calcium uniporter (MCU) is responsible for mitochondrial calcium uptake and homeostasis. It is also a target for the regulation of cellular anti-/pro-apoptosis and necrosis by several oncogenes and tumour suppressors. Herein, we report the crystal structure of the MCU N-terminal domain (NTD) at a resolution of 1.50 Å in a novel fold and the S92A MCU mutant at 2.75 Å resolution; the residue S92 is a predicted CaMKII phosphorylation site. The assembly of the mitochondrial calcium uniporter complex (uniplex) and the interaction with the MCU regulators such as the mitochondrial calcium uptake-1 and mitochondrial calcium uptake-2 proteins (MICU1 and MICU2) are not affected by the deletion of MCU NTD. However, the expression of the S92A mutant or a NTD deletion mutant failed to restore mitochondrial Ca(2+) uptake in a stable MCU knockdown HeLa cell line and exerted dominant-negative effects in the wild-type MCU-expressing cell line. These results suggest that the NTD of MCU is essential for the modulation of MCU function, although it does not affect the uniplex formation.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Cristalografia por Raios X , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Modelos Moleculares , Mutação , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
16.
Int Arch Allergy Immunol ; 170(1): 35-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27355819

RESUMO

BACKGROUND: Atopic dermatitis (AD) is the most common allergic inflammatory skin disease. The activation of innate immunity by house dust mite (Dermatophagoides farinae extract, DFE) allergen plays an important role in the pathogenesis of AD. We previously showed the inhibitory effect of an extract of Amomum xanthioides on allergic diseases, and isolated 1,2,4,5-tetramethoxybenzene (TMB) as a major active component. In this study, we investigated whether TMB relieves DFE-induced allergic inflammation symptoms. METHODS: We established a DFE-induced allergic inflammation model in BALB/c mice by repeated skin exposure to DFE. To define the underlying mechanisms of action, we used a tumor necrosis factor-α and interferon-x03B3;-activated human keratinocytes (HaCaT cell line) and mouse keratinocytes (3PC cell line) cell line model. RESULTS: Oral administration of TMB suppressed allergic inflammation symptoms, such as histopathological analysis and ear thickness, in addition to serum IgE, DFE-specific IgE and IgG2a levels. TMB decreased the serum histamine levels and tissue infiltration of inflammatory cells, including mast cells and eosinophils. TMB also inhibited CD4+IFN-x03B3;+, CD4+IL-4+, and CD4+IL-17A+ lymphocyte expansion in the draining lymph nodes and expression of the Th2 cytokines in the ear tissue. TMB significantly inhibited the expression of cytokines and chemokines by the downregulation of the mitogen-activated protein kinases and nuclear factor of activated cytoplasmic T cells in HaCaT cells. CONCLUSIONS: TMB improved DFE-induced allergic inflammation by suppressing the production of proinflammatory cytokines and chemokines. Our results suggest that TMB might be a potential therapeutic agent for AD.


Assuntos
Alérgenos/imunologia , Anisóis/farmacologia , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Pyroglyphidae/imunologia , Animais , Linhagem Celular , Citocinas/sangue , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Feminino , Liberação de Histamina , Humanos , Hipersensibilidade/tratamento farmacológico , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunofenotipagem , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
17.
Bioorg Med Chem Lett ; 26(20): 5116-5118, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27597247

RESUMO

The neuropeptide Y (NPY)-like signaling is conserved broadly in many animal species, and implicated in diverse biological functions, particularly those associated with feeding and metabolism. In Drosophila, three G protein coupled receptors (GPCRs) are closely related to the vertebrate NPY receptors: RYamide receptor (RYa-R) CG5811, neuropeptide F receptor (NPFR) CG1147 and short neuropeptide F receptor (sNPF-R) CG7395. Here, we screened 442 compounds of the pyrazolodiazepine analogs library, and identified four synthetic small compounds that activate the RYa-R, but not other two receptors. Their maximum activity is about 40% of the endogenous ligand, Drosophila RYamide-1, indicating they are partial agonists. Structural comparisons of these agonists identified an active core structure, characterized by phenylalanine and lysine fused pyrazolodiazepine skeletons, which can be utilized as a lead structure for further development of more potent drugs active on mammalian NPYRs. Identification of small compound agonists selective on RYa-R of the genetically amenable insect model will facilitate future efforts to understand biological functions of RYa-R, a GPCR conserved in many species.


Assuntos
Pirazóis/farmacologia , Receptores de Neuropeptídeos/agonistas , Animais , Drosophila , Desenho de Fármacos
18.
Molecules ; 21(8)2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27483228

RESUMO

The ethanolic extract of Lentinula edodes was partially analyzed and then characterized for its efficacy in treating atopic dermatitis. Polyphenols were determined to be the major antioxidant component in the extract (6.12 mg/g), followed by flavonoids (1.76 mg/g), ß-carotene (28.75 µg/g), and lycopene (5.25 µg/g). An atopic dermatitis (AD) model was established and epidermal and dermal ear thickness, mast cell infiltration, and serum immunoglobulin levels were measured after oral administration of the L. edodes extract for 4 weeks. L. edodes extract decreased Dermatophagoides farinae extract (DFE) and 4-dinitrochlorobenzene (DNCB)-induced expression of several inflammatory cytokines in the ears, cervical lymph nodes, and splenocytes. Consequently, L. edodes extract may have therapeutic potential in the treatment of AD attributable to its immunomodulatory effects.


Assuntos
Dermatite Atópica/tratamento farmacológico , Etanol/química , Fatores Imunológicos , Extratos Vegetais , Cogumelos Shiitake/química , Animais , Linhagem Celular , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Dermatophagoides farinae , Dinitroclorobenzeno/toxicidade , Modelos Animais de Doenças , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
19.
Environ Monit Assess ; 188(6): 348, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27178050

RESUMO

A liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed for monitoring and detection of four different drugs, namely acetanilide, pentylenetetrazole, phenacetin, and tetramethrin in porcine muscle, pasteurized milk, and table egg samples. For acetanilide and pentylenetetrazole, the samples were extracted with 0.1 % formic acid in acetonitrile, followed by defatting with n-hexane, partitioning at -20 °C for 1 h, centrifugation, and filtration, whereas the quick, easy, cheap, effective, rugged, and safe "QuEChERS" method was used for phenacetin and tetramethrin. The final extracts were combined and analyzed in a single chromatographic run using an XBridge(TM) analytical column and 0.1 % formic acid and 10 mM ammonium formate in ultrapure water (A) and 0.1 % formic acid and 10 mM ammonium formate in methanol (B) as the mobile phase. Owing to the unavailability of internal standards, matrix-matched calibrations were used for analyte quantification with coefficients of determination (R (2)) ≥ 0.9865. The intra- and inter-day accuracies ranged from 60.75 to 90.90 % and from 63.75 to 89.30 %, respectively, while the respective analytical precisions were 1.48-17.44 % (23.3 % for porcine sample spiked with phenacetin) and 1.97-15.78 %. The limits of quantification (LOQ) were between 0.5 and 2.5 ng/g in the matrices tested. Food samples purchased from local markets in Seoul were analyzed using the developed method and none of the tested drugs was detected.


Assuntos
Ovos/análise , Monitoramento Ambiental/métodos , Leite/química , Músculos/química , Suínos/metabolismo , Drogas Veterinárias/análise , Animais , Cromatografia Líquida/métodos , Contaminação de Alimentos/análise , Carne/análise , Leite/metabolismo , Músculos/metabolismo , Suínos/sangue , Espectrometria de Massas em Tandem/métodos , Drogas Veterinárias/farmacocinética
20.
Cytokine ; 72(1): 63-70, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25585356

RESUMO

Retinoic acid-inducible gene I (RIG-I) plays an important role in antiviral immunity as a cytosolic receptor recognizing invading viruses. The activation of downstream signaling pathways led by IFN-ß promoter stimulator-1 (IPS-1), an adaptor, is known to culminate in the activation of IRFs and the expression of type I interferons. However, the role of Src-family-tyrosine kinases (STKs) in the RIG-I signaling pathway has not been fully evaluated. Through a combined approach of immunoprecipitation and micro reversed phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) analysis, we established that Lyn, one of the STKs, is associated with RIG-I in macrophages. The association of Lyn and RIG-I was confirmed by co-immunoprecipitation study with 293T cells overexpressing Lyn and RIG-I. Suppression of Lyn by siRNA knockdown or a pharmacological inhibitor (PP2) resulted in the attenuation of IRF3 activation and IFN-ß expression induced by short poly I:C, a RIG-I agonist, in macrophages. Lyn activation, as determined by phosphorylation of Tyr396 residue, was observed upon short poly I:C stimulation in the mitochondria of macrophages. Short poly I:C induced the formation of speckle-like aggregates of Lyn, which are prominent in mitochondria. Lyn associated with IPS-1, an adaptor protein of RIG-I, which resides on mitochondria membrane. Helicase domain of RIG-I and CARD of IPS-1 are responsible for the interaction with Lyn while SH3 and SH2 domains in Lyn are required for the association with RIG-I and IPS-1. Collectively, our results indicate that Lyn plays a positive regulatory role in RIG-I-mediated interferon expression as a downstream component of IPS-1. They provide further information as to how tyrosine kinases such as STKs play a role in the regulation of antiviral immunity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Interferon beta/genética , Macrófagos/metabolismo , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Linhagem Celular , Cromatografia de Fase Reversa , Proteína DEAD-box 58 , Humanos , Imunoprecipitação , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/biossíntese , Interferon beta/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/fisiologia , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fosforilação , Poli I-C/farmacologia , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/genética , Receptores de Reconhecimento de Padrão , Transdução de Sinais , Espectrometria de Massas em Tandem , Quinases da Família src/química , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA