Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Nano Lett ; 24(35): 11059-11066, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39186689

RESUMO

The downsizing of microscale energy storage devices is crucial for powering modern on-chip technologies by miniaturizing electronic components. Developing high-performance microscale energy devices, such as micro-supercapacitors, is essential through processing smart electrodes for on-chip structures. In this context, we introduce porous gold (Au) interdigitated electrodes (IDEs) as current collectors for micro-supercapacitors, using polyaniline as the active material. These porous Au IDE-based symmetric micro-supercapacitors (P-SMSCs) show a remarkable enhancement in charge storage performance, with a 187% increase in areal capacitance at 2.5 mA compared to conventional flat Au IDE-based devices, despite identical active material loading times. Our P-SMSCs achieve an areal capacitance of 60 mF/cm2, a peak areal energy density of 5.44 µWh/cm2, and an areal power of 2778 µW/cm2, surpassing most reported SMSCs. This study advances high-performance SMSCs by developing highly porous microscale planar current collectors, optimizing microelectrode use, and maximizing capacity within a compact footprint.

2.
Nano Lett ; 24(35): 10874-10882, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39163512

RESUMO

The downsizing of microscale energy storage devices plays a crucial role in powering modern emerging devices. Therefore, the scientific focus on developing high-performance microdevices, balancing energy density and power density, becomes essential. In this context, we explore an advanced Microplotter technique to fabricate hybrid planar Zn-ion microcapacitors (ZIMCs) that exhibit dual charge storage characteristics, with an electrical double layer capacitor type activated carbon anode and a battery type VO2 (B) cathode, aiming to achieve energy density surpassing supercapacitors and power density exceeding batteries. Effective loading of VO2 (B) cathode electrode materials combined with activated carbon anode onto confined planar microelectrodes not only provides reversible Zn2+ storage performance but also mitigates dendrite formation. This not only results in superior charge storage performance, including areal energies of 2.34 µWh/cm2 (at 74.76 µW/cm2) and 0.94 µWh/cm2 (at 753.12 µW/cm2), exceeding performance of zinc nanoparticle anode and activated carbon cathode based ZIMCs, but also ensures stable capacity retention of 87% even after 1000 cycles and free from any unwanted dendrites. Consequently, this approach is directed toward the development of high-performance ZIMCs by exploring high-capacity materials for efficient utilization on microelectrodes and achieving maximum possible capacities within the constraints of the limited device footprint.

3.
Nano Lett ; 24(10): 3036-3043, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38415595

RESUMO

Zinc-iodine batteries (ZIBs) are promising candidates for ecofriendly, safe, and low-cost energy storage systems, but polyiodide shuttling and the complex cathode fabrication procedures have severely hindered their broader commercial usage. Herein, a protocol is developed using phospholipid-like oleylamine molecules for scalable production of Langmuir-Blodgett films, which allows the facile preparation of ZIB cathodes in less than 1 min. The resulting inhomogeneous cathode allows for the continuous conversion of iodine. Moreover, the amine group of the oleylamine molecule at the cathode is capable of producing [OA*I+]I3- charge-transfer complexes with iodine, which facilitates the rapid migration of iodine and results in a highly reversible iodine conversion process. Consequently, the as-prepared ZIBs can deliver over 2000 cycles at 0.5 mA cm-2 with a capacity retention of 75.3%. This work presents a novel, straightforward, and efficient method for the rapid construction of ZIBs.

4.
Nano Lett ; 24(30): 9155-9162, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38917338

RESUMO

Herein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO2), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO2. However, UHMWPE-TiO2@rGO exhibited potent photobiocidal activity (>3-log reduction) against Staphylococcus epidermidis and Escherichia coli bacteria after a 12 h exposure to white light. The activity was even more potent against the phage phi 6 virus, a SARS-CoV-2 surrogate, with a >5-log reduction after 6 h exposure to white light. Our mechanistic studies showed that the UHMWPE-TiO2@rGO was activated only by UV light, which accounts for 0.31% of the light emitted by the white LED lamp, producing reactive oxygen species that are lethal to microbes. This indicates that adding rGO to UHMWPE-TiO2 triggered intense photobiocidal activity even at shallow UV flux levels.


Assuntos
Escherichia coli , Grafite , Luz , Polietilenos , Staphylococcus epidermidis , Titânio , Grafite/química , Grafite/farmacologia , Grafite/efeitos da radiação , Titânio/química , Titânio/farmacologia , Polietilenos/química , Polietilenos/efeitos da radiação , Polietilenos/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta
5.
J Am Chem Soc ; 146(31): 21377-21388, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046802

RESUMO

Aqueous zinc (Zn) iodine (I2) batteries have emerged as viable alternatives to conventional metal-ion batteries. However, undesirable Zn deposition and irreversible iodine conversion during cycling have impeded their progress. To overcome these concerns, we report a dynamical interface design by cation chemistry that improves the reversibility of Zn deposition and four-electron iodine conversion. Due to this design, we demonstrate an excellent Zn-plating/-stripping behavior in Zn||Cu asymmetric cells over 1000 cycles with an average Coulombic efficiency (CE) of 99.95%. Moreover, the Zn||I2 full cells achieve a high-rate capability (217.1 mA h g-1 at 40 A g-1; C rate of 189.5C) at room temperature and enable stable cycling with a CE of more than 99% at -50 °C at a current density of 0.05 A g-1. In situ spectroscopic investigations and simulations reveal that introducing tetraethylammonium cations as ion sieves can dynamically modulate the electrode-electrolyte interface environment, forming the unique water-deficient and chloride ion (Cl-)-rich interface. Such Janus interface accounts for the suppression of side reactions, the prevention of ICl decomposition, and the enrichment of reactants, enhancing the reversibility of Zn-stripping/-plating and four-electron iodine chemistry. This fundamental understanding of the intrinsic interplay between the electrode-electrolyte interface and cations offers a rational standpoint for tuning the reversibility of iodine conversion.

6.
Small ; : e2403555, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39279328

RESUMO

Aqueous rechargeable zinc-ion batteries (ZIBs) are increasingly recognized as promising energy storage systems for mini-grid and mini-off-grid applications due to their advantageous characteristics such as high safety, affordability, and considerable theoretical capacity. However, the long-term cycling performance of ZIBs is hampered by challenges including the uncontrolled dendrite formation, the passivation, and the occurrence of the hydrogen evolution reaction (HER) on the Zn anode. In this study, enhancing ZIB performance by implementing oxide material coatings on Zn metal, serving as a physical barrier at the electrode-electrolyte interfaces to mitigate dendrite growth and suppress the HER is concentrated. Specifically, the mechanisms through which the n-type semiconductor TiO2 coated Zn anode establishes ohmic contact with Zn, and the high-dielectric BaTiO3 (BTO) coated Zn anode fosters Maxwell-Wagner polarization with ferroelectric properties, significantly inhibiting dendrite growth and side reactions, thereby resulting in a highly stable Zn anode for efficient aqueous ZIBs is explored. This advanced BTO/Zn electrode demonstrates an extended lifespan of over 700 h compared to bare Zn and TiO2/Zn anodes. Additionally, full-cell aqueous ZIBs incorporating BTO/Zn//VO2 (B) batteries exhibit superior rate capabilities, high capacity, and sustained cycle life.

7.
Small ; 20(14): e2308869, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988637

RESUMO

Solar power represents an abundant and readily available source of renewable energy. However, its intermittent nature necessitates external energy storage solutions, which can often be expensive, bulky, and associated with energy conversion losses. This study introduces the concept of a photo-accelerated battery that seamlessly integrates energy harvesting and storage functions within a single device. In this research, a novel approach for crafting photocathodes is presented using hydrogenated vanadium pentoxide (H:V2O5) nanofibers. This method enhances optical activity, electronic conductivity, and ion diffusion rates within photo-accelerated Li-ion batteries. This study findings reveal that H:V2O5 exhibits notable improvements in specific capacity under both dark and illuminated conditions. Furthermore, it demonstrates enhanced diffusion kinetics and charge storage performance when exposed to light, as compared to pristine counterparts. This strategy of defect engineering holds great promise for the development of high-performance photocathodes in future energy storage applications.

8.
Angew Chem Int Ed Engl ; 63(36): e202407038, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38871655

RESUMO

Reconstruction-engineered electrocatalysts with enriched high active Ni species for urea oxidation reaction (UOR) have recently become promising candidates for energy conversion. However, to inhibit the over-oxidation of urea brought by the high valence state of Ni, tremendous efforts are devoted to obtaining low-value products of nitrogen gas to avoid toxic nitrite formation, undesirably causing inefficient utilization of the nitrogen cycle. Herein, we proposed a mediation engineering strategy to significantly boost high-value nitrite formation to help close a loop for the employment of a nitrogen economy. Specifically, platinum-loaded nickel phosphides (Pt-Ni2P) catalysts exhibit a promising nitrite production rate (0.82 mol kWh-1 cm-2), high stability over 66 h of Zn-urea-air battery operation, and 135 h of co-production of nitrite and hydrogen under 200 mA cm-2 in a zero-gap membrane electrode assembly (MEA) system. The in situ spectroscopic characterizations and computational calculations demonstrated that the urea oxidation kinetics is facilitated by enriched dynamic Ni3+ active sites, thus augmenting the "cyanate" UOR pathway. The C-N cleavage was further verified as the rate-determining step for nitrite generation.

9.
Adv Funct Mater ; 33(50): 2301857, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38495320

RESUMO

Smart robotic devices remotely powered by magnetic field have emerged as versatile tools for wide biomedical applications. Soft magnetic elastomer (ME) composite membranes with high flexibility and responsiveness are frequently incorporated to enable local actuation for wireless sensing or cargo delivery. However, the fabrication of thin ME membranes with good control in geometry and uniformity remains challenging, as well as the optimization of their actuating performances under low fields (milli-Tesla). In this work, the development of ME membranes comprising of low-cost magnetic powder and highly soft elastomer through a simple template-assisted doctor blading approach, is reported. The fabricated ME membranes are controllable in size (up to centimetre-scale), thickness (tens of microns) and high particle loading (up to 70 wt.%). Conflicting trade-off effects of particle concentration upon magnetic responsiveness and mechanical stiffness are investigated and found to be balanced off as it exceeds 60 wt.%. A highly sensitive fibre-optic interferometric sensing system and a customized fibre-ferrule-membrane probe are first proposed to enable dynamic actuation and real-time displacement characterization. Free-standing ME membranes are magnetically excited under low field down to 2 mT, and optically monitored with nanometer accuracy. The fast and consistent responses of ME membranes showcase their promising biomedical applications in nanoscale actuation and sensing.

10.
Small ; 19(7): e2206588, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470658

RESUMO

Potassium-ion batteries (PIBs) have become one of the promising candidates for electrochemical energy storage that can provide low-cost and high-performance advantages. The poor cyclability and rate capability of PIBs are due to the intensive structural change of electrode materials during battery operation. Carbon-based materials as anodes have been successfully commercialized in lithium- and sodium-ion batteries but is still struggling in potassium-ion battery field. This work conducts structural engineering strategy to induce anionic defects within the carbon structures to boost the kinetics of PIBs anodes. The carbon framework provides a strong and stable structure to accommodate the volume variation of materials during cycling, and the further phosphorus doping modification is shown to enhance the rate capability. This is found due to the change of the pore size distribution, electronic structures, and hence charge storage mechanism. The optimized electrode in this work shows a high capacity of 175 mAh g-1 at a current density of 0.2 A g-1 and the enhancement of rate performance as the PIB anode (60% capacity retention with the current density increase of 50 times). This work, therefore provides a rational design for guiding future research on carbon-based anodes for PIBs.

11.
Small ; : e2306827, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054756

RESUMO

Zinc metal is a promising candidate for anodes in zinc-ion batteries (ZIBs), but its widespread implementation is hindered by dendrite growth in aqueous electrolytes. Dendrites lead to undesirable side reactions, such as hydrogen evolution, passivation, and corrosion, causing reduced capacity during prolonged cycling. In this study, an approach is explored to address this challenge by directly growing 1D zinc oxide (ZnO) nanorods (NRs) and 2D ZnO nanoflakes (NFs) on Zn anodes, forming artificial layers to enhance ZIB performance. The incorporation of ZnO on the anode offers both chemical and thermal stability and leverages its n-type semiconductor nature to facilitate the formation of ohmic contacts. This results in efficient electron transport during Zn ion plating and stripping processes. Consequently, the ZnO NFs-coated Zn anodes demonstrate significantly improved charge storage performance, achieving 348 mAh g-1 , as compared to ZnO NRs (250 mAh g-1 ) and pristine Zn (160 mAh g-1 ) anodes when evaluated in full cells with V2 O5 cathodes. One significant advantage of ZnO NFs lies in their highly polar surfaces, promoting strong interactions with water molecules and rendering them exceptionally hydrophilic. This characteristic enhances the ability of ZnO NFs to desolvate Zn2+ ions, leading to improved charge storage performance.

12.
Langmuir ; 39(22): 7731-7740, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37216613

RESUMO

Robust fluorine-free superhydrophobic films were produced from a mixture of two fatty acids (stearic acid and palmitic acid), SiO2 nanoparticles, and polydimethylsiloxane. These simple and nontoxic compounds were deposited via aerosol-assisted chemical vapor deposition to provide the rough topography required for superhydrophobicity, formed through island growth of the aggregates. The optimum conditions for well-adhered superhydrophobic films produced films with a highly textured morphology, which possessed a water contact angle of 162 ± 2° and a sliding angle of <5°. Superhydrophobicity was maintained after ultraviolet exposure (14 days at 365 nm), heat treatment (5 h at 300 °C and 5 h at 400 °C), 300 tape peel cycles, and exposure to ethanol and toluene (5 h each).

13.
Philos Trans A Math Phys Eng Sci ; 381(2259): 20220343, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691466

RESUMO

Photo-induced enhanced Raman spectroscopy (PIERS) has emerged as a highly sensitive surface-enhanced Raman spectroscopy (SERS) technique for the detection of ultra-low concentrations of organic molecules. The PIERS mechanism has been largely attributed to UV-induced formation of surface oxygen vacancies (Vo) in semiconductor materials, although alternative interpretations have been suggested. Very recently, PIERS has been proposed as a surface probe for photocatalytic materials, following Vo formation and healing kinetics. This work establishes comparison between PIERS and Vo-induced SERS approaches in defected noble-metal-free titanium dioxide (TiO2-x) films to further confirm the role of Vo in PIERS. Upon application of three post-treatment methods (namely UV-induction, vacuum annealing and argon etching), correlation of Vo kinetics and distribution could be established. A proposed mechanism and further discussion on PIERS as a probe to explore photocatalytic materials are also presented. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

14.
Phys Chem Chem Phys ; 25(29): 20134-20144, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37463042

RESUMO

Noble metal nanoparticles are widely used as co-catalysts for storing and separating electrons in semiconductor photocatalysis. Thus, evaluating this ability is important and meaningful to understand the photocatalytic mechanism. Employing Ag nanoparticles, the present study combined in situ photoconductance and theoretical analysis to evaluate the Fermi-level (EF) shift in a UV-illuminated Ag/TiO2 system under gaseous conditions. Based on this, the role of the Ag nanoparticles in storing and separating electrons was discussed. It was found that the EF of Ag/TiO2 is located deeper in the gap and a variation in temperature has less effect on the EF of Ag/TiO2 compared to the undecorated TiO2. The analysis showed that ∼46 electrons can be stored in 10 nm Ag nanoparticles under our experimental conditions, which does not change with temperature. The electron traps in TiO2 can affect the electron distribution in the TiO2 and Ag nanoparticles. It was observed that the localized surface plasmon resonance (LSPR) of the Ag nanoparticles exhibited a blue-shift under UV light illumination, which is generally ascribed to the electron storage in the Ag nanoparticles. However, we showed that the blue-shift is not related to the electron storage in the Ag nanoparticles, and thus it cannot be used as an indicator for evaluating their electron-storage ability. The in situ XPS analysis also does not support that the LSPR blue shift is associated with the reduction in the Ag2O layer and TiO2.

15.
Phys Chem Chem Phys ; 25(6): 4563-4569, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722885

RESUMO

Bismuth halides with formula A3Bi2X9, where A is an inorganic or organic cation, show desirable properties as solar absorbers and luminescent materials. Control of structural and electronic dimensionality of these compounds is important to yield materials with good light absorption and charge transport. Here we report mechanochemical reaction of (CH3NH3)3Bi2Br9 with SnBr2 at room temperature in air, yielding a material with strong absorption across the visible region. We attribute this to mixed valence doping of Sn(II) and Sn(IV) on the Bi site. X-Ray diffraction shows no secondary phases, even after heating at 200 °C to improve crystallinity. X-Ray photoelectron spectroscopy suggests the presence of Sn(II) and Sn(IV) states. A similar approach to dope Sn into the iodide analogue (CH3NH3)3Bi2I9 was unsuccessful.

16.
Chem Soc Rev ; 51(20): 8476-8583, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36189687

RESUMO

Liquid-repellent surfaces, such as superhydrophobic surfaces, superoleophobic surfaces, and slippery liquid-infused surfaces, have drawn keen research interest from the communities engaged in chemical synthesis, interfacial chemistry, surface engineering, bionic manufacturing and micro-nano machining. This is due to their great potential applications in liquid-proofing, self-cleaning, chemical resistance, anti-icing, water/oil remediation, biomedicine, etc. However, poor robustness and durability that notably hinders the real-world applications of such surfaces remains their Achilles heel. The past few years have witnessed rapidly increasing publications that address the robustness and durability of liquid-repellent surfaces, and many breakthroughs have been achieved. This review provides an overview of the recent progress made towards robust and durable liquid-repellent surfaces. First, we discuss the wetting of solid surface and its generally-adopted characterisation methods, and introduce typical liquid-repellent surfaces. Second, we focus on various evaluation methods of the robustness and durability of liquid-repellent surfaces. Third, the recent advances in design and fabrication of robust and durable liquid-repellent surfaces are reviewed in detail. Fourth, we present the applications where these surfaces have been employed in fields like chemistry, engineering, biology and in daily life. Finally, we discuss the possible research perspectives in robust and durable liquid-repellent surfaces. By presenting such state-of-the-art of this significant and fast-developing area, we believe that this review will inspire multidisciplinary scientific communities and industrial circles to develop novel liquid-repellent surfaces that can meet the requirements of various real-world applications.


Assuntos
Água , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Água/química , Molhabilidade
17.
Angew Chem Int Ed Engl ; 62(41): e202311268, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37615518

RESUMO

For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO- , the affinity of Zn2+ ions to alginate acid induces a well-aligned accelerating channel for uniform plating. This SEI regulates the desolvation structure of Zn2+ and facilitates the formation of compact Zn (002) crystal planes. Even under high depth of discharge conditions (DOD), the SA-coated Zn anode still maintains a stable Zn stripping/plating behavior with a low potential difference (0.114 V). According to the classical nucleation theory, the nucleation energy for SA-coated Zn is 97 % less than that of bare Zn, resulting in a faster nucleation rate. The Zn||Cu cell assembled with the SA-coated electrode exhibits an outstanding average CE of 99.8 % over 1,400 cycles. The design is successfully demonstrated in pouch cells, where the SA-coated Zn exhibits capacity retention of 96.9 % compared to 59.1 % for bare Zn anode, even under the high cathode mass loading (>10 mg/cm2 ).

18.
Angew Chem Int Ed Engl ; 62(21): e202301433, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36947446

RESUMO

Electrocatalytic oxygen reduction reaction (ORR) has been intensively studied for environmentally benign applications. However, insufficient understanding of ORR 2 e- -pathway mechanism at the atomic level inhibits rational design of catalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H2 O2 electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2 e- -pathway selectivity. Through electrochemical and operando spectroscopic studies on a series of CoNx /carbon nanotube hybrids, a construction-driven approach based on an extended "dynamic active site saturation" model that aims to create the maximum number of 2 e- ORR sites by directing the secondary ORR electron transfer towards the 2 e- intermediate is proven to be attainable by manipulating O2 hydrogenation kinetics.

19.
Angew Chem Int Ed Engl ; 62(5): e202212695, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36375075

RESUMO

Aqueous zinc-ion batteries have drawn increasing attention due to the intrinsic safety, cost-effectiveness and high energy density. However, parasitic reactions and non-uniform dendrite growth on the Zn anode side impede their application. Herein, a multifunctional additive, ammonium dihydrogen phosphate (NHP), is introduced to regulate uniform zinc deposition and to suppress side reactions. The results show that the NH4 + tends to be preferably absorbed on the Zn surface to form a "shielding effect" and blocks the direct contact of water with Zn. Moreover, NH4 + and (H2 PO4 )- jointly maintain pH values of the electrode-electrolyte interface. Consequently, the NHP additive enables highly reversible Zn plating/stripping behaviors in Zn//Zn and Zn//Cu cells. Furthermore, the electrochemical performances of Zn//MnO2 full cells and Zn//active carbon (AC) capacitors are improved. This work provides an efficient and general strategy for modifying Zn plating/stripping behaviors and suppressing side reactions in mild aqueous electrolyte.

20.
Angew Chem Int Ed Engl ; 62(21): e202303525, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36929681

RESUMO

The electrochemical synthesis of hydrogen peroxide (H2 O2 ) via a two-electron (2 e- ) oxygen reduction reaction (ORR) process provides a promising alternative to replace the energy-intensive anthraquinone process. Herein, we develop a facile template-protected strategy to synthesize a highly active quinone-rich porous carbon catalyst for H2 O2 electrochemical production. The optimized PCC900 material exhibits remarkable activity and selectivity, of which the onset potential reaches 0.83 V vs. reversible hydrogen electrode in 0.1 M KOH and the H2 O2 selectivity is over 95 % in a wide potential range. Comprehensive synchrotron-based near-edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with electrocatalytic characterizations reveals the positive correlation between quinone content and 2 e- ORR performance. The effectiveness of chair-form quinone groups as the most efficient active sites is highlighted by the molecule-mimic strategy and theoretical analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA