Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(13): 2392-2404, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29912393

RESUMO

Systemic lupus erythematosus (SLE or lupus) (OMIM: 152700) is a chronic autoimmune disease with debilitating inflammation that affects multiple organ systems. The STAT1-STAT4 locus is one of the first and most highly replicated genetic loci associated with lupus risk. We performed a fine-mapping study to identify plausible causal variants within the STAT1-STAT4 locus associated with increased lupus disease risk. Using complementary frequentist and Bayesian approaches in trans-ancestral Discovery and Replication cohorts, we found one variant whose association with lupus risk is supported across ancestries in both the Discovery and Replication cohorts: rs11889341. In B cell lines from patients with lupus and healthy controls, the lupus risk allele of rs11889341 was associated with increased STAT1 expression. We demonstrated that the transcription factor HMGA1, a member of the HMG transcription factor family with an AT-hook DNA-binding domain, has enriched binding to the risk allele compared with the non-risk allele of rs11889341. We identified a genotype-dependent repressive element in the DNA within the intron of STAT4 surrounding rs11889341. Consistent with expression quantitative trait locus (eQTL) analysis, the lupus risk allele of rs11889341 decreased the activity of this putative repressor. Altogether, we present a plausible molecular mechanism for increased lupus risk at the STAT1-STAT4 locus in which the risk allele of rs11889341, the most probable causal variant, leads to elevated STAT1 expression in B cells due to decreased repressor activity mediated by increased binding of HMGA1.


Assuntos
Alelos , Lúpus Eritematoso Sistêmico/genética , Polimorfismo Genético , Locos de Características Quantitativas , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT4/genética , Feminino , Humanos , Lúpus Eritematoso Sistêmico/epidemiologia , Masculino , Fatores de Risco
2.
bioRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405748

RESUMO

Inflammatory Bowel Disease ( IBD ) is a chronic and often debilitating autoinflammatory condition, with an increasing incidence in children. Standard-of-care therapies lead to sustained transmural healing and clinical remission in fewer than one-third of patients. For children, TNFα inhibition remains the only FDA-approved biologic therapy, providing an even greater urgency to understanding mechanisms of response. Genome-wide association studies ( GWAS ) have identified 418 independent genetic risk loci contributing to IBD, yet the majority are noncoding and their mechanisms of action are difficult to decipher. If causal, they likely alter transcription factor ( TF ) binding and downstream gene expression in particular cell types and contexts. To bridge this knowledge gap, we built a novel resource: multiome-seq (tandem single-nuclei ( sn )RNA-seq and chromatin accessibility ( snATAC )-seq) of intestinal tissue from pediatric IBD patients, where anti-TNF response was defined by endoscopic healing. From the snATAC-seq data, we generated a first-time atlas of chromatin accessibility (putative regulatory elements) for diverse intestinal cell types in the context of IBD. For cell types/contexts mediating genetic risk, we reasoned that accessible chromatin will co-localize with genetic disease risk loci. We systematically tested for significant co-localization of our chromatin accessibility maps and risk variants for 758 GWAS traits. Globally, genetic risk variants for IBD, autoimmune and inflammatory diseases are enriched in accessible chromatin of immune populations, while other traits (e.g., colorectal cancer, metabolic) are enriched in epithelial and stromal populations. This resource opens new avenues to uncover the complex molecular and cellular mechanisms mediating genetic disease risk.

3.
Front Mol Neurosci ; 13: 594319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304240

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia and is characterized by the buildup of ß-amyloid plaques and neurofibrillary Tau tangles. This leads to decreased synaptic efficacy, cell death, and, consequently, brain atrophy in patients. Behaviorally, this manifests as memory loss and confusion. Using a gene ontology analysis, we recently identified AD and other age-related dementias as candidate diseases associated with the loss of DEK expression. DEK is a nuclear phosphoprotein with roles in DNA repair, cellular proliferation, and inhibiting apoptosis. Work from our laboratory determined that DEK is highly expressed in the brain, particularly in regions relevant to learning and memory, including the hippocampus. Moreover, we have also determined that DEK is highly expressed in neurons. Consistent with our gene ontology analysis, we recently reported that cortical DEK protein levels are inversely proportional to dementia severity scores in elderly female patients. However, the functional role of DEK in neurons is unknown. Thus, we knocked down DEK in an in vitro neuronal model, differentiated SH-SY5Y cells, hypothesizing that DEK loss would result in cellular and molecular phenotypes consistent with AD. We found that DEK loss resulted in increased neuronal death by apoptosis (i.e., cleaved caspases 3 and 8), decreased ß-catenin levels, disrupted neurite development, higher levels of total and phosphorylated Tau at Ser262, and protein aggregates. We have demonstrated that DEK loss in vitro recapitulates cellular and molecular phenotypes of AD pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA