Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Oncologist ; 29(7): 638-e952, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38815151

RESUMO

BACKGROUND: The National Cancer Institute-Children's Oncology Group Pediatric Molecular Analysis for Therapy Choice (MATCH) precision oncology platform trial enrolled children aged 1-21 years with treatment-refractory solid tumors and predefined actionable genetic alterations. Patients with tumors harboring alterations in DNA damage repair (DDR) genes were assigned to receive olaparib. METHODS: Tumor and blood samples were submitted for centralized molecular testing. Tumor and germline sequencing were conducted in parallel. Olaparib was given twice daily for 28-day cycles starting at a dose 30% lower than the adult recommended phase 2 dose (RP2D). The primary endpoint was the objective response. RESULTS: Eighteen patients matched (1.5% of those screened) based on the presence of a deleterious gene alteration in BRCA1/2, RAD51C/D, or ATM detected by tumor sequencing without germline subtraction or analysis of loss of heterozygosity (LOH). Eleven (61%) harbored a germline mutation, with only one exhibiting LOH. Six patients enrolled and received the olaparib starting dose of 135 mg/m2/dose. Two participants were fully evaluable; 4 were inevaluable because <85% of the prescribed dose was administered during cycle 1. There were no dose-limiting toxicities or responses. Minimal hematologic toxicity was observed. CONCLUSION: Most DDR gene alterations detected in Pediatric MATCH were germline, monoallelic, and unlikely to confer homologous recombination deficiency predicting sensitivity to olaparib monotherapy. The study closed due to poor accrual. CLINICALTRIALS.GOV IDENTIFIER: NCT03233204. IRB approved: initial July 24, 2017.


Assuntos
Reparo do DNA , Neoplasias , Ftalazinas , Piperazinas , Humanos , Ftalazinas/uso terapêutico , Ftalazinas/efeitos adversos , Ftalazinas/administração & dosagem , Piperazinas/uso terapêutico , Piperazinas/administração & dosagem , Piperazinas/efeitos adversos , Criança , Feminino , Masculino , Pré-Escolar , Adolescente , Neoplasias/tratamento farmacológico , Neoplasias/genética , Lactente , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Adulto Jovem , Mutação em Linhagem Germinativa , Proteína BRCA2/genética , Proteína BRCA1/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ligação a DNA/genética , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Adulto
2.
Am J Hum Genet ; 103(3): 319-327, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193136

RESUMO

The Clinical Sequencing Evidence-Generating Research (CSER) consortium, now in its second funding cycle, is investigating the effectiveness of integrating genomic (exome or genome) sequencing into the clinical care of diverse and medically underserved individuals in a variety of healthcare settings and disease states. The consortium comprises a coordinating center, six funded extramural clinical projects, and an ongoing National Human Genome Research Institute (NHGRI) intramural project. Collectively, these projects aim to enroll and sequence over 6,100 participants in four years. At least 60% of participants will be of non-European ancestry or from underserved settings, with the goal of diversifying the populations that are providing an evidence base for genomic medicine. Five of the six clinical projects are enrolling pediatric patients with various phenotypes. One of these five projects is also enrolling couples whose fetus has a structural anomaly, and the sixth project is enrolling adults at risk for hereditary cancer. The ongoing NHGRI intramural project has enrolled primarily healthy adults. Goals of the consortium include assessing the clinical utility of genomic sequencing, exploring medical follow up and cascade testing of relatives, and evaluating patient-provider-laboratory level interactions that influence the use of this technology. The findings from the CSER consortium will offer patients, healthcare systems, and policymakers a clearer understanding of the opportunities and challenges of providing genomic medicine in diverse populations and settings, and contribute evidence toward developing best practices for the delivery of clinically useful and cost-effective genomic sequencing in diverse healthcare settings.


Assuntos
Genoma Humano/genética , Adulto , Análise Custo-Benefício/métodos , Atenção à Saúde/métodos , Europa (Continente) , Exoma/genética , Genômica/métodos , Humanos , National Human Genome Research Institute (U.S.) , Fenótipo , Estados Unidos , Sequenciamento Completo do Genoma/métodos
3.
Am J Hum Genet ; 101(4): 503-515, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28942966

RESUMO

Bromodomain PHD finger transcription factor (BPTF) is the largest subunit of nucleosome remodeling factor (NURF), a member of the ISWI chromatin-remodeling complex. However, the clinical consequences of disruption of this complex remain largely uncharacterized. BPTF is required for anterior-posterior axis formation of the mouse embryo and was shown to promote posterior neuroectodermal fate by enhancing Smad2-activated wnt8 expression in zebrafish. Here, we report eight loss-of-function and two missense variants (eight de novo and two of unknown origin) in BPTF on 17q24.2. The BPTF variants were found in unrelated individuals aged between 2.1 and 13 years, who manifest variable degrees of developmental delay/intellectual disability (10/10), speech delay (10/10), postnatal microcephaly (7/9), and dysmorphic features (9/10). Using CRISPR-Cas9 genome editing of bptf in zebrafish to induce a loss of gene function, we observed a significant reduction in head size of F0 mutants compared to control larvae. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and phospho-histone H3 (PH3) staining to assess apoptosis and cell proliferation, respectively, showed a significant increase in cell death in F0 mutants compared to controls. Additionally, we observed a substantial increase of the ceratohyal angle of the craniofacial skeleton in bptf F0 mutants, indicating abnormal craniofacial patterning. Taken together, our data demonstrate the pathogenic role of BPTF haploinsufficiency in syndromic neurodevelopmental anomalies and extend the clinical spectrum of human disorders caused by ablation of chromatin remodeling complexes.


Assuntos
Anormalidades Múltiplas/genética , Antígenos Nucleares/genética , Anormalidades Craniofaciais/genética , Regulação da Expressão Gênica no Desenvolvimento , Haploinsuficiência/genética , Transtornos do Desenvolvimento da Linguagem/genética , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/patologia , Adolescente , Animais , Antígenos Nucleares/metabolismo , Sistemas CRISPR-Cas , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Montagem e Desmontagem da Cromatina , Estudos de Coortes , Anormalidades Craniofaciais/patologia , Feminino , Edição de Genes , Haploinsuficiência/fisiologia , Humanos , Transtornos do Desenvolvimento da Linguagem/patologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Microcefalia/patologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
4.
Am J Hum Genet ; 98(6): 1051-1066, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27181682

RESUMO

Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine.


Assuntos
Pesquisa Biomédica , Prática Clínica Baseada em Evidências , Exoma/genética , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Adulto , Doenças Cardiovasculares/genética , Criança , Ensaios Clínicos como Assunto , Humanos , National Human Genome Research Institute (U.S.) , Grupos Populacionais , Software , Estados Unidos
5.
N Engl J Med ; 372(26): 2481-98, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26061751

RESUMO

BACKGROUND: Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS: We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS: Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS: The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.).


Assuntos
DNA de Neoplasias/análise , Genes p53 , Glioma/genética , Mutação , Adolescente , Adulto , Idoso , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19 , Análise por Conglomerados , Feminino , Glioblastoma/genética , Glioma/metabolismo , Glioma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Modelos de Riscos Proporcionais , Análise de Sequência de DNA , Transdução de Sinais
7.
Neoplasia ; 35: 100846, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36335802

RESUMO

Pediatric brain tumors are the leading cause of cancer-related death in children in the United States and contribute a disproportionate number of potential years of life lost compared to adult cancers. Moreover, survivors frequently suffer long-term side effects, including secondary cancers. The Children's Brain Tumor Network (CBTN) is a multi-institutional international clinical research consortium created to advance therapeutic development through the collection and rapid distribution of biospecimens and data via open-science research platforms for real-time access and use by the global research community. The CBTN's 32 member institutions utilize a shared regulatory governance architecture at the Children's Hospital of Philadelphia to accelerate and maximize the use of biospecimens and data. As of August 2022, CBTN has enrolled over 4700 subjects, over 1500 parents, and collected over 65,000 biospecimen aliquots for research. Additionally, over 80 preclinical models have been developed from collected tumors. Multi-omic data for over 1000 tumors and germline material are currently available with data generation for > 5000 samples underway. To our knowledge, CBTN provides the largest open-access pediatric brain tumor multi-omic dataset annotated with longitudinal clinical and outcome data, imaging, associated biospecimens, child-parent genomic pedigrees, and in vivo and in vitro preclinical models. Empowered by NIH-supported platforms such as the Kids First Data Resource and the Childhood Cancer Data Initiative, the CBTN continues to expand the resources needed for scientists to accelerate translational impact for improved outcomes and quality of life for children with brain and spinal cord tumors.


Assuntos
Neoplasias Encefálicas , Qualidade de Vida , Adulto , Humanos , Criança , Neoplasias Encefálicas/terapia
8.
Cancer Discov ; 11(9): 2200-2215, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33741710

RESUMO

More than 60% of supratentorial ependymomas harbor a ZFTA-RELA (ZRfus) gene fusion (formerly C11orf95-RELA). To study the biology of ZRfus, we developed an autochthonous mouse tumor model using in utero electroporation (IUE) of the embryonic mouse brain. Integrative epigenomic and transcriptomic mapping was performed on IUE-driven ZRfus tumors by CUT&RUN, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin sequencing, and RNA sequencing and compared with human ZRfus-driven ependymoma. In addition to direct canonical NFκB pathway activation, ZRfus dictates a neoplastic transcriptional program and binds to thousands of unique sites across the genome that are enriched with PLAGL family transcription factor (TF) motifs. ZRfus activates gene expression programs through recruitment of transcriptional coactivators (Brd4, Ep300, Cbp, Pol2) that are amenable to pharmacologic inhibition. Downstream ZRfus target genes converge on developmental programs marked by PLAGL TF proteins, and activate neoplastic programs enriched in Mapk, focal adhesion, and gene imprinting networks. SIGNIFICANCE: Ependymomas are aggressive brain tumors. Although drivers of supratentorial ependymoma (ZFTA- and YAP1-associated gene fusions) have been discovered, their functions remain unclear. Our study investigates the biology of ZFTA-RELA-driven ependymoma, specifically mechanisms of transcriptional deregulation and direct downstream gene networks that may be leveraged for potential therapeutic testing.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Proteínas de Ligação a DNA/genética , Ependimoma/genética , Neoplasias Supratentoriais/genética , Fator de Transcrição RelA/genética , Fatores de Transcrição/genética , Animais , Modelos Animais de Doenças , Ependimoma/patologia , Camundongos , Neoplasias Supratentoriais/patologia
9.
NPJ Syst Biol Appl ; 6(1): 27, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843649

RESUMO

Knowledge about the clonal evolution of a tumor can help to interpret the function of its genetic alterations by identifying initiating events and events that contribute to the selective advantage of proliferative, metastatic, and drug-resistant subclones. Clonal evolution can be reconstructed from estimates of the relative abundance (frequency) of subclone-specific alterations in tumor biopsies, which, in turn, inform on its composition. However, estimating these frequencies is complicated by the high genetic instability that characterizes many cancers. Models for genetic instability suggest that copy number alterations (CNAs) can influence mutation-frequency estimates and thus impede efforts to reconstruct tumor phylogenies. Our analysis suggested that accurate mutation frequency estimates require accounting for CNAs-a challenging endeavour using the genetic profile of a single tumor biopsy. Instead, we propose an optimization algorithm, Chimæra, to account for the effects of CNAs using profiles of multiple biopsies per tumor. Analyses of simulated data and tumor profiles suggested that Chimæra estimates are consistently more accurate than those of previously proposed methods and resulted in improved phylogeny reconstructions and subclone characterizations. Our analyses inferred recurrent initiating mutations in hepatocellular carcinomas, resolved the clonal composition of Wilms' tumors, and characterized the acquisition of mutations in drug-resistant prostate cancers.


Assuntos
Evolução Clonal , Neoplasias/genética , Neoplasias/patologia , Biópsia , Variações do Número de Cópias de DNA , Humanos
10.
Neuro Oncol ; 22(11): 1696-1704, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393959

RESUMO

BACKGROUND: Craniopharyngiomas account for approximately 1.2-4% of all CNS tumors. They are typically treated with a combination of surgical resection and focal radiotherapy. Unfortunately, treatment can lead to permanent deleterious effects on behavior, learning, and endocrine function. METHODS: The Pediatric Brain Tumor Consortium performed a multicenter phase 2 study in children and young adults with unresectable or recurrent craniopharyngioma (PBTC-039). Between December 2013 and November 2017, nineteen patients (median age at enrollment, 13.1 y; range, 2-25 y) were enrolled in one of 2 strata: patients previously treated with surgery alone (stratum 1) or who received radiation (stratum 2). RESULTS: Eighteen eligible patients (8 male, 10 female) were treated with weekly subcutaneous pegylated interferon alpha-2b for up to 18 courses (108 wk). Therapy was well tolerated with no grade 4 or 5 toxicities. 2 of the 7 eligible patients (28.6%) in stratum 1 had a partial response, but only one response was sustained for more than 3 months. None of the 11 stratum 2 patients had an objective radiographic response, although median progression-free survival was 19.5 months. CONCLUSIONS: Pegylated interferon alpha-2b treatment, in lieu of or following radiotherapy, was well tolerated in children and young adults with recurrent craniopharyngiomas. Although objective responses were limited, progression-free survival results are encouraging, warranting further studies.


Assuntos
Neoplasias Encefálicas , Craniofaringioma , Interferon alfa-2/uso terapêutico , Interferon-alfa/uso terapêutico , Polietilenoglicóis/uso terapêutico , Adolescente , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Criança , Pré-Escolar , Craniofaringioma/tratamento farmacológico , Craniofaringioma/radioterapia , Feminino , Humanos , Lactente , Masculino , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/radioterapia , Proteínas Recombinantes/uso terapêutico , Resultado do Tratamento
11.
Per Med ; 14(6): 503-514, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29749861

RESUMO

AIM: Describe modifications to technical genomic terminology made by interpreters during disclosure of whole exome sequencing (WES) results. PATIENTS & METHODS: Using discourse analysis, we identified and categorized interpretations of genomic terminology in 42 disclosure sessions where Spanish-speaking parents received their child's WES results either from a clinician using a medical interpreter, or directly from a bilingual physician. RESULTS: Overall, 76% of genomic terms were interpreted accordantly, 11% were misinterpreted and 13% were omitted. Misinterpretations made by interpreters and bilingual physicians included using literal and nonmedical terminology to interpret genomic concepts. CONCLUSION: Modifications to genomic terminology made during interpretation highlight the need to standardize bilingual genomic lexicons. We recommend Spanish terms that can be used to refer to genomic concepts.


Assuntos
Sequenciamento do Exoma , Aconselhamento Genético/normas , Genômica , Relações Profissional-Família , Terminologia como Assunto , Revelação da Verdade , Criança , Feminino , Aconselhamento Genético/métodos , Hispânico ou Latino , Humanos , Masculino , Multilinguismo , Neoplasias/genética , Texas , Tradução
12.
Oncotarget ; 8(28): 46065-46070, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28512266

RESUMO

Juvenile xanthogranuloma (JXG) is a rare histiocytic disorder that is usually benign and self-limiting. We present a case of atypical, aggressive JXG harboring a novel mitogen-activated protein kinase (MAPK) pathway mutation in the MAPK1 gene, which encodes mitogen-activated protein kinase 1 or extracellular signal-regulated 2 (ERK2). Our analysis revealed that the mutation results in constitutive ERK activation that is resistant to BRAF or MEK inhibitors but susceptible to an ERK inhibitor. These data highlight the importance of identifying specific MAPK pathway alterations as part of the diagnostic workup for patients with histiocytic disorders rather than initiating empiric treatment with MEK inhibitors.


Assuntos
Histiócitos/patologia , Linfonodos/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Xantogranuloma Juvenil/genética , Células Cultivadas , Criança , Tratamento Farmacológico , Humanos , Linfonodos/patologia , Masculino , Indução de Remissão , Transdução de Sinais/genética , Transplante de Células-Tronco , Xantogranuloma Juvenil/diagnóstico
13.
Genome Med ; 8(1): 117, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27814769

RESUMO

BACKGROUND: To truly achieve personalized medicine in oncology, it is critical to catalog and curate cancer sequence variants for their clinical relevance. The Somatic Working Group (WG) of the Clinical Genome Resource (ClinGen), in cooperation with ClinVar and multiple cancer variant curation stakeholders, has developed a consensus set of minimal variant level data (MVLD). MVLD is a framework of standardized data elements to curate cancer variants for clinical utility. With implementation of MVLD standards, and in a working partnership with ClinVar, we aim to streamline the somatic variant curation efforts in the community and reduce redundancy and time burden for the interpretation of cancer variants in clinical practice. METHODS: We developed MVLD through a consensus approach by i) reviewing clinical actionability interpretations from institutions participating in the WG, ii) conducting extensive literature search of clinical somatic interpretation schemas, and iii) survey of cancer variant web portals. A forthcoming guideline on cancer variant interpretation, from the Association of Molecular Pathology (AMP), can be incorporated into MVLD. RESULTS: Along with harmonizing standardized terminology for allele interpretive and descriptive fields that are collected by many databases, the MVLD includes unique fields for cancer variants such as Biomarker Class, Therapeutic Context and Effect. In addition, MVLD includes recommendations for controlled semantics and ontologies. The Somatic WG is collaborating with ClinVar to evaluate MVLD use for somatic variant submissions. ClinVar is an open and centralized repository where sequencing laboratories can report summary-level variant data with clinical significance, and ClinVar accepts cancer variant data. CONCLUSIONS: We expect the use of the MVLD to streamline clinical interpretation of cancer variants, enhance interoperability among multiple redundant curation efforts, and increase submission of somatic variants to ClinVar, all of which will enhance translation to clinical oncology practice.


Assuntos
Curadoria de Dados/normas , Variação Genética , Neoplasias/genética , Algoritmos , Bases de Dados Genéticas , Frequência do Gene , Humanos , Medicina de Precisão
14.
J Natl Cancer Inst ; 107(1): 384, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25482530

RESUMO

Gliomas are the most common brain tumor, with several histological subtypes of various malignancy grade. The genetic contribution to familial glioma is not well understood. Using whole exome sequencing of 90 individuals from 55 families, we identified two families with mutations in POT1 (p.G95C, p.E450X), a member of the telomere shelterin complex, shared by both affected individuals in each family and predicted to impact DNA binding and TPP1 binding, respectively. Validation in a separate cohort of 264 individuals from 246 families identified an additional mutation in POT1 (p.D617Efs), also predicted to disrupt TPP1 binding. All families with POT1 mutations had affected members with oligodendroglioma, a specific subtype of glioma more sensitive to irradiation. These findings are important for understanding the origin of glioma and could have importance for the future diagnostics and treatment of glioma.


Assuntos
Neoplasias Encefálicas/genética , Mutação em Linhagem Germinativa , Glioma/genética , Complexo Shelterina/genética , Proteínas de Ligação a Telômeros/genética , Adulto , Idoso , Exoma/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Oligodendroglioma/genética , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA