Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Mol Cell ; 83(10): 1539-1541, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207619

RESUMO

Here, Molecular Cell talks to first author Jonathan Philpott and co-corresponding author Carrie Partch about their paper, "PERIOD phosphorylation leads to feedback inhibition of CK1 activity to control circadian period" (in this issue of Molecular Cell) and their scientific journeys until now.


Assuntos
Proteínas Circadianas Period , Fosforilação , Proteínas Circadianas Period/metabolismo
2.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37207626

RESUMO

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Assuntos
Relógios Circadianos , Proteínas Circadianas Period , Animais , Humanos , Fosforilação , Retroalimentação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Serina/metabolismo , Mamíferos/metabolismo
3.
Nature ; 619(7969): 385-393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407816

RESUMO

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA , Histonas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/genética , DNA/metabolismo , Sequências Hélice-Alça-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Alostérica , Zíper de Leucina , Fator 3 de Transcrição de Octâmero/metabolismo , Multimerização Proteica
4.
Trends Biochem Sci ; 49(3): 236-246, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38185606

RESUMO

Circadian clocks evolved in diverse organisms as an adaptation to the daily swings in ambient light and temperature that derive from Earth's rotation. These timing systems, based on intracellular molecular oscillations, synchronize organisms' behavior and physiology with the 24-h environmental rhythm. The cyanobacterial clock serves as a special model for understanding circadian rhythms because it can be fully reconstituted in vitro. This review summarizes recent advances that leverage new biochemical, biophysical, and mathematical approaches to shed light on the molecular mechanisms of cyanobacterial Kai proteins that support the clock, and their homologues in other bacteria. Many questions remain in circadian biology, and the tools developed for the Kai system will bring us closer to the answers.


Assuntos
Relógios Circadianos , Cianobactérias , Proteínas de Bactérias/metabolismo , Ritmo Circadiano , Cianobactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética
5.
Mol Cell ; 66(4): 447-457.e7, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28506462

RESUMO

The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos , Ritmo Circadiano , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Animais , Linhagem Celular Tumoral , Ciclofilinas/genética , Ciclofilinas/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Humanos , Isomerismo , Camundongos , Mutação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Filogenia , Prolina , Domínios Proteicos , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção , Triptofano
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046033

RESUMO

The ∼20,000 cells of the suprachiasmatic nucleus (SCN), the master circadian clock of the mammalian brain, coordinate subordinate cellular clocks across the organism, driving adaptive daily rhythms of physiology and behavior. The canonical model for SCN timekeeping pivots around transcriptional/translational feedback loops (TTFL) whereby PERIOD (PER) and CRYPTOCHROME (CRY) clock proteins associate and translocate to the nucleus to inhibit their own expression. The fundamental individual and interactive behaviors of PER and CRY in the SCN cellular environment and the mechanisms that regulate them are poorly understood. We therefore used confocal imaging to explore the behavior of endogenous PER2 in the SCN of PER2::Venus reporter mice, transduced with viral vectors expressing various forms of CRY1 and CRY2. In contrast to nuclear localization in wild-type SCN, in the absence of CRY proteins, PER2 was predominantly cytoplasmic and more mobile, as measured by fluorescence recovery after photobleaching. Virally expressed CRY1 or CRY2 relocalized PER2 to the nucleus, initiated SCN circadian rhythms, and determined their period. We used translational switching to control CRY1 cellular abundance and found that low levels of CRY1 resulted in minimal relocalization of PER2, but yet, remarkably, were sufficient to initiate and maintain circadian rhythmicity. Importantly, the C-terminal tail was necessary for CRY1 to localize PER2 to the nucleus and to initiate SCN rhythms. In CRY1-null SCN, CRY1Δtail opposed PER2 nuclear localization and correspondingly shortened SCN period. Through manipulation of CRY proteins, we have obtained insights into the spatiotemporal behaviors of PER and CRY sitting at the heart of the TTFL molecular mechanism.


Assuntos
Ritmo Circadiano , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , Neurônios do Núcleo Supraquiasmático/metabolismo , Animais , Ritmo Circadiano/genética , Imunofluorescência , Regulação da Expressão Gênica , Camundongos , Proteínas Circadianas Period/genética , Transporte Proteico , Imagem com Lapso de Tempo
7.
Semin Cell Dev Biol ; 126: 71-78, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933351

RESUMO

Genetically encoded biological clocks are found broadly throughout life on Earth, where they generate circadian (about a day) rhythms that synchronize physiology and behavior with the daily light/dark cycle. Although the genetic networks that give rise to circadian timing are now fairly well established, our understanding of how the proteins that constitute the molecular 'cogs' of this biological clock regulate the intrinsic timing, or period, of circadian rhythms has lagged behind. New studies probing the biochemical and structural basis of clock protein function are beginning to reveal how assemblies of dedicated clock proteins form and evolve through post-translational regulation to generate circadian rhythms. This review will highlight some recent advances providing important insight into the molecular mechanisms of period control in mammalian clocks with an emphasis on structural analyses related to CK1-dependent control of PER stability.


Assuntos
Relógios Circadianos , Animais , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos/genética , Fotoperíodo
8.
Biopolymers ; 115(2): e23559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37421636

RESUMO

Circadian clocks are intracellular systems that orchestrate metabolic processes in anticipation of sunrise and sunset by providing an internal representation of local time. Because the ~24-h metabolic rhythms they produce are important to health across diverse life forms there is growing interest in their mechanisms. However, mechanistic studies are challenging in vivo due to the complex, that is, poorly defined, milieu of live cells. Recently, we reconstituted the intact circadian clock of cyanobacteria in vitro. It oscillates autonomously and remains phase coherent for many days with a fluorescence-based readout that enables real-time observation of individual clock proteins and promoter DNA simultaneously under defined conditions without user intervention. We found that reproducibility of the reactions required strict adherence to the quality of each recombinant clock protein purified from Escherichia coli. Here, we provide protocols for preparing in vitro clock samples so that other labs can ask questions about how changing environments, like temperature, metabolites, and protein levels are reflected in the core oscillator and propagated to regulation of transcription, providing deeper mechanistic insights into clock biology.


Assuntos
Relógios Circadianos , Cianobactérias , Relógios Circadianos/genética , Reprodutibilidade dos Testes , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34183418

RESUMO

Disruption of circadian rhythms increases the risk of several types of cancer. Mammalian cryptochromes (CRY1 and CRY2) are circadian transcriptional repressors that are related to DNA-repair enzymes. While CRYs lack DNA-repair activity, they modulate the transcriptional response to DNA damage, and CRY2 can promote SKP1 cullin 1-F-box (SCF)FBXL3-mediated ubiquitination of c-MYC and other targets. Here, we characterize five mutations in CRY2 observed in human cancers in The Cancer Genome Atlas. We demonstrate that two orthologous mutations of mouse CRY2 (D325H and S510L) accelerate the growth of primary mouse fibroblasts expressing high levels of c-MYC. Neither mutant affects steady-state levels of overexpressed c-MYC, and they have divergent impacts on circadian rhythms and on the ability of CRY2 to interact with SCFFBXL3 Unexpectedly, stable expression of either CRY2 D325H or of CRY2 S510L robustly suppresses P53 target-gene expression, suggesting that this may be a primary mechanism by which they influence cell growth.


Assuntos
Criptocromos/genética , Mutação de Sentido Incorreto/genética , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Proliferação de Células , Criptocromos/metabolismo , Proteínas F-Box/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mapas de Interação de Proteínas , Transcrição Gênica
10.
PLoS Genet ; 17(11): e1009933, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807912

RESUMO

In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Inflamação/genética , Fator de Transcrição RelA/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Inflamação/patologia , NF-kappa B/genética , Núcleo Supraquiasmático/metabolismo
11.
Mol Cell ; 58(5): 743-54, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25936801

RESUMO

The circadian clock orchestrates global changes in transcriptional regulation on a daily basis via the bHLH-PAS transcription factor CLOCK:BMAL1. Pathways driven by other bHLH-PAS transcription factors have a homologous repressor that modulates activity on a tissue-specific basis, but none have been identified for CLOCK:BMAL1. We show here that the cancer/testis antigen PASD1 fulfills this role to suppress circadian rhythms. PASD1 is evolutionarily related to CLOCK and interacts with the CLOCK:BMAL1 complex to repress transcriptional activation. Expression of PASD1 is restricted to germline tissues in healthy individuals but can be induced in cells of somatic origin upon oncogenic transformation. Reducing PASD1 in human cancer cells significantly increases the amplitude of transcriptional oscillations to generate more robust circadian rhythms. Our results describe a function for a germline-specific protein in regulation of the circadian clock and provide a molecular link from oncogenic transformation to suppression of circadian rhythms.


Assuntos
Antígenos de Neoplasias/fisiologia , Antígenos Nucleares/fisiologia , Proteínas CLOCK/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Antígenos Nucleares/química , Proteínas CLOCK/metabolismo , Linhagem Celular Tumoral , Ritmo Circadiano , Sequência Conservada , Éxons , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Testículo/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(45): 27971-27979, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106415

RESUMO

Circadian rhythms are generated by interlocked transcription-translation feedback loops that establish cell-autonomous biological timing of ∼24 h. Mutations in core clock genes that alter their stability or affinity for one another lead to changes in circadian period. The human CRY1Δ11 mutant lengthens circadian period to cause delayed sleep phase disorder (DSPD), characterized by a very late onset of sleep. CRY1 is a repressor that binds to the transcription factor CLOCK:BMAL1 to inhibit its activity and close the core feedback loop. We previously showed how the PHR (photolyase homology region) domain of CRY1 interacts with distinct sites on CLOCK and BMAL1 to sequester the transactivation domain from coactivators. However, the Δ11 variant alters an intrinsically disordered tail in CRY1 downstream of the PHR. We show here that the CRY1 tail, and in particular the region encoded by exon 11, modulates the affinity of the PHR domain for CLOCK:BMAL1. The PHR-binding epitope in exon 11 is necessary and sufficient to disrupt the interaction between CRY1 and the subunit CLOCK. Moreover, PHR-tail interactions are conserved in the paralog CRY2 and reduced when either CRY is bound to the circadian corepressor PERIOD2. Discovery of this autoregulatory role for the mammalian CRY1 tail and conservation of PHR-tail interactions in both mammalian cryptochromes highlights functional conservation with plant and insect cryptochromes, which also utilize PHR-tail interactions to reversibly control their activity.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Animais , Relógios Circadianos , Humanos , Camundongos , Proteínas Circadianas Period/metabolismo , Domínios Proteicos , Transcrição Gênica
13.
J Cell Sci ; 133(18)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934011

RESUMO

Mammalian circadian rhythms drive ∼24 h periodicity in a wide range of cellular processes, temporally coordinating physiology and behaviour within an organism, and synchronising this with the external day-night cycle. The canonical model for this timekeeping consists of a delayed negative-feedback loop, containing transcriptional activator complex CLOCK-BMAL1 (BMAL1 is also known as ARNTL) and repressors period 1, 2 and 3 (PER1, PER2 and PER3) and cryptochrome 1 and 2 (CRY1 and CRY2), along with a number of accessory factors. Although the broad strokes of this system are defined, the exact molecular mechanisms by which these proteins generate a self-sustained rhythm with such periodicity and fidelity remains a topic of much research. Recent studies have identified prominent roles for a number of crucial post-transcriptional, translational and, particularly, post-translational events within the mammalian circadian oscillator, providing an increasingly complex understanding of the activities and interactions of the core clock proteins. In this Review, we highlight such contemporary work on non-transcriptional events and set it within our current understanding of cellular circadian timekeeping.


Assuntos
Proteínas CLOCK , Proteínas Circadianas Period , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(23): 5986-5991, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784789

RESUMO

Multisite phosphorylation of the PERIOD 2 (PER2) protein is the key step that determines the period of the mammalian circadian clock. Previous studies concluded that an unidentified kinase is required to prime PER2 for subsequent phosphorylation by casein kinase 1 (CK1), an essential clock component that is conserved from algae to humans. These subsequent phosphorylations stabilize PER2, delay its degradation, and lengthen the period of the circadian clock. Here, we perform a comprehensive biochemical and biophysical analysis of mouse PER2 (mPER2) priming phosphorylation and demonstrate, surprisingly, that CK1δ/ε is indeed the priming kinase. We find that both CK1ε and a recently characterized CK1δ2 splice variant more efficiently prime mPER2 for downstream phosphorylation in cells than the well-studied splice variant CK1δ1. While CK1 phosphorylation of PER2 was previously shown to be robust to changes in the cellular environment, our phosphoswitch mathematical model of circadian rhythms shows that the CK1 carboxyl-terminal tail can allow the period of the clock to be sensitive to cellular signaling. These studies implicate the extreme carboxyl terminus of CK1 as a key regulator of circadian timing.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/metabolismo , Ritmo Circadiano/fisiologia , Proteínas Circadianas Period/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Proteínas Circadianas Period/genética , Fosforilação
15.
Cell Commun Signal ; 18(1): 182, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198762

RESUMO

Cryptochrome (CRY) proteins play an essential role in regulating mammalian circadian rhythms. CRY is composed of a structured N-terminal domain known as the photolyase homology region (PHR), which is tethered to an intrinsically disordered C-terminal tail. The PHR domain is a critical hub for binding other circadian clock components such as CLOCK, BMAL1, PERIOD, or the ubiquitin ligases FBXL3 and FBXL21. While the isolated PHR domain is necessary and sufficient to generate circadian rhythms, removing or modifying the cryptochrome tails modulates the amplitude and/or periodicity of circadian rhythms, suggesting that they play important regulatory roles in the molecular circadian clock. In this commentary, we will discuss how recent studies of these intrinsically disordered tails are helping to establish a general and evolutionarily conserved model for CRY function, where the function of PHR domains is modulated by reversible interactions with their intrinsically disordered tails. Video abstract.


Assuntos
Relógios Circadianos , Criptocromos/química , Criptocromos/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Mamíferos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Humanos
16.
Nature ; 505(7481): 103-7, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24256734

RESUMO

Human body-surface epithelia coexist in close association with complex bacterial communities and are protected by a variety of antibacterial proteins. C-type lectins of the RegIII family are bactericidal proteins that limit direct contact between bacteria and the intestinal epithelium and thus promote tolerance to the intestinal microbiota. RegIII lectins recognize their bacterial targets by binding peptidoglycan carbohydrate, but the mechanism by which they kill bacteria is unknown. Here we elucidate the mechanistic basis for RegIII bactericidal activity. We show that human RegIIIα (also known as HIP/PAP) binds membrane phospholipids and kills bacteria by forming a hexameric membrane-permeabilizing oligomeric pore. We derive a three-dimensional model of the RegIIIα pore by docking the RegIIIα crystal structure into a cryo-electron microscopic map of the pore complex, and show that the model accords with experimentally determined properties of the pore. Lipopolysaccharide inhibits RegIIIα pore-forming activity, explaining why RegIIIα is bactericidal for Gram-positive but not Gram-negative bacteria. Our findings identify C-type lectins as mediators of membrane attack in the mucosal immune system, and provide detailed insight into an antibacterial mechanism that promotes mutualism with the resident microbiota.


Assuntos
Antibacterianos/metabolismo , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Intestinos/química , Lectinas Tipo C/metabolismo , Porinas/metabolismo , Antibacterianos/química , Antibacterianos/imunologia , Antibacterianos/farmacologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/química , Biomarcadores Tumorais/imunologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Microscopia Crioeletrônica , Cristalografia por Raios X , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/metabolismo , Humanos , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Lipopolissacarídeos/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/imunologia , Listeria monocytogenes/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Proteínas Associadas a Pancreatite , Peptidoglicano/metabolismo , Fosfolipídeos/metabolismo , Porinas/antagonistas & inibidores , Porinas/química , Simbiose
17.
Proc Natl Acad Sci U S A ; 114(7): 1560-1565, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28143926

RESUMO

The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ∼24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here we show that CRY1 binds directly to the PAS domain core of CLOCK:BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solution X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Relógios Circadianos/genética , Criptocromos/genética , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Células Sf9 , Spodoptera
18.
Trends Biochem Sci ; 40(9): 489-90, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26256246

RESUMO

It is widely recognized that BMAL1 is an essential subunit of the primary transcription factor that drives rhythmic circadian transcription in the nucleus. In a surprising turn, Lipton et al. now show that BMAL1 rhythmically interacts with translational machinery in the cytosol to stimulate protein synthesis in response to mTOR signaling.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais
19.
J Biol Chem ; 293(14): 5026-5034, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29440392

RESUMO

Circadian rhythms enable cells and organisms to coordinate their physiology with the cyclic environmental changes that come as a result of Earth's light/dark cycles. Cyanobacteria make use of a post-translational oscillator to maintain circadian rhythms, and this elegant system has become an important model for circadian timekeeping mechanisms. Composed of three proteins, the KaiABC system undergoes an oscillatory biochemical cycle that provides timing cues to achieve a 24-h molecular clock. Together with the input/output proteins SasA, CikA, and RpaA, these six gene products account for the timekeeping, entrainment, and output signaling functions in cyanobacterial circadian rhythms. This Minireview summarizes the current structural, functional and mechanistic insights into the cyanobacterial circadian clock.


Assuntos
Proteínas de Bactérias/metabolismo , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Cianobactérias/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/química , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Cianobactérias/química , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Fotoperíodo , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Transdução de Sinais
20.
Proc Natl Acad Sci U S A ; 113(10): 2756-61, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26903623

RESUMO

The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1-CLOCK complexes is suppressed by PER-CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2(Edo/Edo) mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2(Edo) complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2(Edo/Edo); Csnk1e(Tau/Tau) mice and the SCN. These periods are unprecedented in mice. Thus, Per2(Edo) reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Mutação de Sentido Incorreto , Proteínas Circadianas Period/genética , Sequência de Aminoácidos , Animais , Western Blotting , Células COS , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Chlorocebus aethiops , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas Circadianas Period/química , Proteínas Circadianas Period/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA