RESUMO
The adsorption of oxygen on a pseudomorphic iron monolayer deposited on a W(110) surface was studied experimentally and theoretically. Standard surface characterization methods, such as Auger electron spectroscopy and low energy electron diffraction, and specific nuclear methods, such as conversion electron Mössbauer spectroscopy (CEMS) and nuclear resonant scattering of synchrotron radiation, combined with theoretical calculations based on the density functional theory allowed us to determine the structure of the oxygen adsorbate and the electronic properties of iron atoms with different oxygen coordinations. The oxygen-(3 × 2) structure on the iron monolayer was recognized and was interpreted to be a state with oxygen chemisorbed on the non-reconstructed surface with modest electron transfer from iron to oxygen. A transition from chemisorbed oxygen to the onset of Fe-oxidation is revealed by distinct changes in the CEMS spectra.
RESUMO
An in-plane spin-reorientation transition occurring during the growth of epitaxial Fe films on W(110) was studied in situ by using the nuclear resonant scattering of synchrotron radiation. The spin-reorientation transition originates at the Fe/W(110) interface and proceeds via a noncollinear spin structure resembling a planar domain wall that propagates towards the surface with increasing film thickness.