Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Annu Rev Immunol ; 41: 533-560, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36854182

RESUMO

Autoreactive B cells and interferons are central players in systemic lupus erythematosus (SLE) pathogenesis. The partial success of drugs targeting these pathways, however, supports heterogeneity in upstream mechanisms contributing to disease pathogenesis. In this review, we focus on recent insights from genetic and immune monitoring studies of patients that are refining our understanding of these basic mechanisms. Among them, novel mutations in genes affecting intrinsic B cell activation or clearance of interferogenic nucleic acids have been described. Mitochondria have emerged as relevant inducers and/or amplifiers of SLE pathogenesis through a variety of mechanisms that include disruption of organelle integrity or compartmentalization, defective metabolism, and failure of quality control measures. These result in extra- or intracellular release of interferogenic nucleic acids as well as in innate and/or adaptive immune cell activation. A variety of classic and novel SLE autoantibody specificities have been found to recapitulate genetic alterations associated with monogenic lupus or to trigger interferogenic amplification loops. Finally, atypical B cells and novel extrafollicular T helper cell subsets have been proposed to contribute to the generation of SLE autoantibodies. Overall, these novel insights provide opportunities to deepen the immunophenotypic surveillance of patients and open the door to patient stratification and personalized, rational approaches to therapy.


Assuntos
Interferons , Lúpus Eritematoso Sistêmico , Humanos , Animais , Interferons/uso terapêutico , Linfócitos B , Linfócitos T Auxiliares-Indutores , Autoanticorpos
2.
Annu Rev Immunol ; 35: 337-370, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28142321

RESUMO

Transcriptomics, the high-throughput characterization of RNAs, has been instrumental in defining pathogenic signatures in human autoimmunity and autoinflammation. It enabled the identification of new therapeutic targets in IFN-, IL-1- and IL-17-mediated diseases. Applied to immunomonitoring, transcriptomics is starting to unravel diagnostic and prognostic signatures that stratify patients, track molecular changes associated with disease activity, define personalized treatment strategies, and generally inform clinical practice. Herein, we review the use of transcriptomics to define mechanistic, diagnostic, and predictive signatures in human autoimmunity and autoinflammation. We discuss some of the analytical approaches applied to extract biological knowledge from high-dimensional data sets. Finally, we touch upon emerging applications of transcriptomics to study eQTLs, B and T cell repertoire diversity, and isoform usage.


Assuntos
Doenças Autoimunes/diagnóstico , Inflamação/diagnóstico , Transcriptoma , Doenças Autoimunes/imunologia , Conjuntos de Dados como Assunto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inflamação/imunologia , Armazenamento e Recuperação da Informação , Terapia de Alvo Molecular , Monitorização Imunológica , Prognóstico
3.
Cell ; 186(18): 3882-3902.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37597510

RESUMO

Inflammation can trigger lasting phenotypes in immune and non-immune cells. Whether and how human infections and associated inflammation can form innate immune memory in hematopoietic stem and progenitor cells (HSPC) has remained unclear. We found that circulating HSPC, enriched from peripheral blood, captured the diversity of bone marrow HSPC, enabling investigation of their epigenomic reprogramming following coronavirus disease 2019 (COVID-19). Alterations in innate immune phenotypes and epigenetic programs of HSPC persisted for months to 1 year following severe COVID-19 and were associated with distinct transcription factor (TF) activities, altered regulation of inflammatory programs, and durable increases in myelopoiesis. HSPC epigenomic alterations were conveyed, through differentiation, to progeny innate immune cells. Early activity of IL-6 contributed to these persistent phenotypes in human COVID-19 and a mouse coronavirus infection model. Epigenetic reprogramming of HSPC may underlie altered immune function following infection and be broadly relevant, especially for millions of COVID-19 survivors.


Assuntos
COVID-19 , Memória Epigenética , Síndrome de COVID-19 Pós-Aguda , Animais , Humanos , Camundongos , Diferenciação Celular , COVID-19/imunologia , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Inflamação/genética , Imunidade Treinada , Monócitos/imunologia , Síndrome de COVID-19 Pós-Aguda/genética , Síndrome de COVID-19 Pós-Aguda/imunologia , Síndrome de COVID-19 Pós-Aguda/patologia
4.
Nat Immunol ; 25(2): 316-329, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182669

RESUMO

Pneumococcal infections cause serious illness and death among older adults. The capsular polysaccharide vaccine PPSV23 and conjugated alternative PCV13 can prevent these infections; yet, underlying immunological responses and baseline predictors remain unknown. We vaccinated 39 older adults (>60 years) with PPSV23 or PCV13 and observed comparable antibody responses (day 28) and plasmablast transcriptional responses (day 10); however, the baseline predictors were distinct. Analyses of baseline flow cytometry and bulk and single-cell RNA-sequencing data revealed a baseline phenotype specifically associated with weaker PCV13 responses, which was characterized by increased expression of cytotoxicity-associated genes, increased frequencies of CD16+ natural killer cells and interleukin-17-producing helper T cells and a decreased frequency of type 1 helper T cells. Men displayed this phenotype more robustly and mounted weaker PCV13 responses than women. Baseline expression levels of a distinct gene set predicted PPSV23 responses. This pneumococcal precision vaccinology study in older adults uncovered distinct baseline predictors that might transform vaccination strategies and initiate novel interventions.


Assuntos
Anticorpos Antibacterianos , Streptococcus pneumoniae , Masculino , Humanos , Feminino , Idoso , Vacinas Conjugadas , Método Duplo-Cego , Vacinação , Vacinas Pneumocócicas , Polissacarídeos
5.
Cell ; 184(17): 4464-4479.e19, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34384544

RESUMO

Emerging evidence supports that mitochondrial dysfunction contributes to systemic lupus erythematosus (SLE) pathogenesis. Here we show that programmed mitochondrial removal, a hallmark of mammalian erythropoiesis, is defective in SLE. Specifically, we demonstrate that during human erythroid cell maturation, a hypoxia-inducible factor (HIF)-mediated metabolic switch is responsible for the activation of the ubiquitin-proteasome system (UPS), which precedes and is necessary for the autophagic removal of mitochondria. A defect in this pathway leads to accumulation of red blood cells (RBCs) carrying mitochondria (Mito+ RBCs) in SLE patients and in correlation with disease activity. Antibody-mediated internalization of Mito+ RBCs induces type I interferon (IFN) production through activation of cGAS in macrophages. Accordingly, SLE patients carrying both Mito+ RBCs and opsonizing antibodies display the highest levels of blood IFN-stimulated gene (ISG) signatures, a distinctive feature of SLE.


Assuntos
Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Mitocôndrias/metabolismo , Células Mieloides/metabolismo , Adolescente , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Criança , Pré-Escolar , Eritroblastos/metabolismo , Eritroblastos/ultraestrutura , Eritrócitos/metabolismo , Eritropoese , Humanos , Mitofagia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
6.
Immunity ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39378884

RESUMO

Opsonization of red blood cells that retain mitochondria (Mito+ RBCs), a feature of systemic lupus erythematosus (SLE), triggers type I interferon (IFN) production in macrophages. We report that monocytes (Mos) co-produce IFN and mature interleukin-1ß (mIL-1ß) upon Mito+ RBC opsonization. IFN expression depended on cyclic GMP-AMP synthase (cGAS) and RIG-I-like receptors' (RLRs) sensing of Mito+ RBC-derived mitochondrial DNA (mtDNA) and mtRNA, respectively. Interleukin-1ß (IL-1ß) production was initiated by the RLR antiviral signaling adaptor (MAVS) pathway recognition of Mito+ RBC-derived mtRNA. This led to the cytosolic release of Mo mtDNA, which activated the inflammasome. Importantly, mIL-1ß secretion was independent of gasdermin D (GSDMD) and pyroptosis but relied on IFN-inducible myxovirus-resistant protein 1 (MxA), which facilitated the incorporation of mIL-1ß into a trans-Golgi network (TGN)-mediated secretory pathway. RBC internalization identified a subset of blood Mo expressing IFN-stimulated genes (ISGs) that released mIL-1ß and expanded in SLE patients with active disease.

7.
Nat Immunol ; 21(9): 1094-1106, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32747814

RESUMO

Patients with systemic lupus erythematosus (SLE) display a complex blood transcriptome whose cellular origin is poorly resolved. Using single-cell RNA sequencing, we profiled ~276,000 peripheral blood mononuclear cells from 33 children with SLE with different degrees of disease activity and 11 matched controls. Increased expression of interferon-stimulated genes (ISGs) distinguished cells from children with SLE from healthy control cells. The high ISG expression signature (ISGhi) derived from a small number of transcriptionally defined subpopulations within major cell types, including monocytes, CD4+ and CD8+ T cells, natural killer cells, conventional and plasmacytoid dendritic cells, B cells and especially plasma cells. Expansion of unique subpopulations enriched in ISGs and/or in monogenic lupus-associated genes classified patients with the highest disease activity. Profiling of ~82,000 single peripheral blood mononuclear cells from adults with SLE confirmed the expansion of similar subpopulations in patients with the highest disease activity. This study lays the groundwork for resolving the origin of the SLE transcriptional signatures and the disease heterogeneity towards precision medicine applications.


Assuntos
Leucócitos Mononucleares/fisiologia , Lúpus Eritematoso Sistêmico/genética , Análise de Célula Única/métodos , Adolescente , Adulto , Células Cultivadas , Criança , Estudos de Coortes , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Interferons/genética , Masculino , Análise de Sequência de RNA , Índice de Gravidade de Doença , Transcriptoma
8.
Annu Rev Immunol ; 28: 535-71, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20192809

RESUMO

The past decade has seen an explosion in the use of DNA-based microarrays. These techniques permit assessment of RNA abundance on a genome-wide scale. Medical applications emerged in the field of cancer, with studies of both solid tumors and hematological malignancies leading to the development of tests that are now used to personalize therapeutic options. Microarrays have also been used to analyze the blood transcriptome in a wide range of diseases. In human autoimmune diseases, these studies are showing potential for identifying therapeutic targets as well as biomarkers for diagnosis, assessment of disease activity, and response to treatment. More quantitative and sensitive high-throughput RNA profiling methods are starting to be available and will be necessary for transcriptome analyses to become routine tests in the clinical setting. We expect this to crystallize within the coming decade, as these methods become part of the personalized medicine armamentarium.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Animais , Doenças Autoimunes/sangue , Doenças Autoimunes/tratamento farmacológico , Biomarcadores/sangue , Genômica , Ensaios de Triagem em Larga Escala , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
9.
Cell ; 165(3): 551-65, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27040498

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to nucleic acids and highly diverse clinical manifestations. To assess its molecular heterogeneity, we longitudinally profiled the blood transcriptome of 158 pediatric patients. Using mixed models accounting for repeated measurements, demographics, treatment, disease activity (DA), and nephritis class, we confirmed a prevalent IFN signature and identified a plasmablast signature as the most robust biomarker of DA. We detected gradual enrichment of neutrophil transcripts during progression to active nephritis and distinct signatures in response to treatment in different nephritis subclasses. Importantly, personalized immunomonitoring uncovered individual correlates of disease activity that enabled patient stratification into seven groups, supported by patient genotypes. Our study uncovers the molecular heterogeneity of SLE and provides an explanation for the failure of clinical trials. This approach may improve trial design and implementation of tailored therapies in genetically and clinically complex autoimmune diseases. PAPERCLIP.


Assuntos
Lúpus Eritematoso Sistêmico/genética , Adolescente , Criança , Feminino , Humanos , Estudos Longitudinais , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Lúpus Eritematoso Sistêmico/terapia , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Neutrófilos/imunologia , Polimorfismo de Nucleotídeo Único , Medicina de Precisão , Transcriptoma
10.
Nature ; 605(7909): 349-356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477763

RESUMO

Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.


Assuntos
Mutação com Ganho de Função , Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Animais , Autoimunidade/genética , Linfócitos B , GMP Cíclico/análogos & derivados , Guanosina , Humanos , Lúpus Eritematoso Sistêmico/genética , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
11.
Nat Immunol ; 15(12): 1134-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344726

RESUMO

Loss of function of the kinase IRAK4 or the adaptor MyD88 in humans interrupts a pathway critical for pathogen sensing and ignition of inflammation. However, patients with loss-of-function mutations in the genes encoding these factors are, unexpectedly, susceptible to only a limited range of pathogens. We employed a systems approach to investigate transcriptome responses following in vitro exposure of patients' blood to agonists of Toll-like receptors (TLRs) and receptors for interleukin 1 (IL-1Rs) and to whole pathogens. Responses to purified agonists were globally abolished, but variable residual responses were present following exposure to whole pathogens. Further delineation of the latter responses identified a narrow repertoire of transcriptional programs affected by loss of MyD88 function or IRAK4 function. Our work introduces the use of a systems approach for the global assessment of innate immune responses and the characterization of human primary immunodeficiencies.


Assuntos
Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Quinases Associadas a Receptores de Interleucina-1/genética , Mutação , Fator 88 de Diferenciação Mieloide/genética , Adolescente , Criança , Pré-Escolar , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Lactente , Quinases Associadas a Receptores de Interleucina-1/imunologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Doenças da Imunodeficiência Primária , Transcriptoma
13.
Bioinformatics ; 40(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38867706

RESUMO

SUMMARY: Subcluster analysis is a powerful means to improve clustering and characterization of single cell RNA-Seq data. However, there are no existing tools to systematically integrate results from multiple subclusters, which creates hurdles for accurate data quantification, visualization, and interpretation in downstream analysis. To address this issue, we developed Ragas, an R package that integrates multi-level subclustering objects for streamlined analysis and visualization. A new data structure was implemented to seamlessly connect and assemble miscellaneous single cell analyses from different levels of subclustering, along with several new or enhanced visualization functions. Moreover, a re-projection algorithm was developed to integrate nearest-neighbor graphs from multiple subclusters in order to maximize their separability on the combined cell embeddings, which significantly improved the presentation of rare and homogeneous subpopulations. AVAILABILITY AND IMPLEMENTATION: The Ragas package and its documentation can be accessed through https://github.com/jig4003/Ragas and its source code is also available at https://zenodo.org/records/11244921.


Assuntos
Algoritmos , Análise de Célula Única , Software , Análise de Célula Única/métodos , Análise por Conglomerados , Humanos , RNA-Seq/métodos , Análise de Sequência de RNA/métodos
14.
Clin Immunol ; 261: 109926, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38355030

RESUMO

Our study aimed to evaluate the presence, clinical associations, and potential mechanistic roles of non-criteria antiphospholipid antibodies (aPL) and circulating calprotectin, a highly stable marker of neutrophil extracellular trap release (NETosis), in pediatric APS patients. We found that 79% of pediatric APS patients had at least one non-criteria aPL at moderate-to-high titer. Univariate logistic regression demonstrated that positive anti-beta-2 glycoprotein I domain 1 (anti-D1) IgG (p = 0.008), anti-phosphatidylserine/prothrombin (aPS/PT) IgG (p < 0.001), and aPS/PT IgM (p < 0.001) were significantly associated with venous thrombosis. Positive anti-D1 IgG (p < 0.001), aPS/PT IgG (p < 0.001), and aPS/PT IgM (p = 0.001) were also associated with non-thrombotic manifestations of APS, such as thrombocytopenia. Increased levels of calprotectin were detected in children with APS. Calprotectin correlated positively with absolute neutrophil count (r = 0.63, p = 0.008) and negatively with platelet count (r = -0.59, p = 0.015). Mechanistically, plasma from pediatric APS patients with high calprotectin levels impaired platelet viability in a dose-dependent manner.


Assuntos
Anticorpos Antifosfolipídeos , Síndrome Antifosfolipídica , Humanos , Criança , Biomarcadores , beta 2-Glicoproteína I , Imunoglobulina G , Imunoglobulina M , Protrombina , Complexo Antígeno L1 Leucocitário
15.
Nat Immunol ; 13(10): 925-31, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22990890

RESUMO

Feedback regulatory circuits provided by regulatory T cells (T(reg) cells) and suppressive cytokines are an intrinsic part of the immune system, along with effector functions. Here we discuss some of the regulatory cytokines that have evolved to permit tolerance to components of self as well as the eradication of pathogens with minimal collateral damage to the host. Interleukin 2 (IL-2), IL-10 and transforming growth factor-ß (TGF-ß) are well characterized, whereas IL-27, IL-35 and IL-37 represent newcomers to the spectrum of anti-inflammatory cytokines. We also emphasize how information accumulated through in vitro as well as in vivo studies of genetically engineered mice can help in the understanding and treatment of human diseases.


Assuntos
Anti-Inflamatórios/imunologia , Citocinas/imunologia , Inflamação/imunologia , Interleucinas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Anti-Inflamatórios/metabolismo , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Interleucina-1/imunologia , Interleucina-10/imunologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-2/imunologia , Interleucinas/metabolismo , Camundongos , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
16.
Nat Immunol ; 13(12): 1178-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23104095

RESUMO

We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic autoinflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1 (RBCK1), a component of the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability. NF-κB activation in response to interleukin 1ß (IL-1ß) was compromised in the patients' fibroblasts. By contrast, the patients' mononuclear leukocytes, particularly monocytes, were hyper-responsive to IL-1ß. The consequences of human HOIL-1 and LUBAC deficiencies for IL-1ß responses thus differed between cell types, consistent with the unique association of autoinflammation and immunodeficiency in these patients. These data suggest that LUBAC regulates NF-κB-dependent IL-1ß responses differently in different cell types.


Assuntos
Doença de Depósito de Glicogênio Tipo IV/genética , Doenças Hereditárias Autoinflamatórias/genética , Síndromes de Imunodeficiência/genética , NF-kappa B/metabolismo , Ubiquitina-Proteína Ligases/genética , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Síndromes de Imunodeficiência/metabolismo , Interleucina-1beta/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Fatores de Transcrição , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
Immunity ; 42(6): 1159-70, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26070486

RESUMO

Increased activity of T follicular helper (Tfh) cells plays a major pathogenic role in systemic lupus erythematosus (SLE). However, the mechanisms that cause aberrant Tfh cell responses in SLE remain elusive. Here we showed the OX40 ligand (OX40L)-OX40 axis contributes to the aberrant Tfh response in SLE. OX40L was expressed by myeloid antigen-presenting cells (APCs), but not B cells, in blood and in inflamed tissues in adult and pediatric SLE patients. The frequency of circulating OX40L-expressing myeloid APCs positively correlated with disease activity and the frequency of ICOS(+) blood Tfh cells in SLE. OX40 signals promoted naive and memory CD4(+) T cells to express multiple Tfh cell molecules and were sufficient to induce them to become functional B cell helpers. Immune complexes containing RNA induced OX40L expression on myeloid APCs via TLR7 activation. Our study provides a rationale to target the OX40L-OX40 axis as a therapeutic modality for SLE.


Assuntos
Lúpus Eritematoso Sistêmico/imunologia , Células Mieloides/imunologia , Ligante OX40/metabolismo , Receptores OX40/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Adolescente , Adulto , Idoso , Apresentação de Antígeno , Linfócitos B/imunologia , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Progressão da Doença , Feminino , Humanos , Memória Imunológica , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , RNA/imunologia , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Adulto Jovem
18.
Immunity ; 38(4): 818-30, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23562160

RESUMO

In comparison to murine dendritic cells (DCs), less is known about the function of human DCs in tissues. Here, we analyzed, by using lung tissues from humans and humanized mice, the role of human CD1c(+) and CD141(+) DCs in determining the type of CD8(+) T cell immunity generated to live-attenuated influenza virus (LAIV) vaccine. We found that both lung DC subsets acquired influenza antigens in vivo and expanded specific cytotoxic CD8(+) T cells in vitro. However, lung-tissue-resident CD1c(+) DCs, but not CD141(+) DCs, were able to drive CD103 expression on CD8(+) T cells and promoted CD8(+) T cell accumulation in lung epithelia in vitro and in vivo. CD1c(+) DCs induction of CD103 expression was dependent on membrane-bound cytokine TGF-ß1. Thus, CD1c(+) and CD141(+) DCs generate CD8(+) T cells with different properties, and CD1c(+) DCs specialize in the regulation of mucosal CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Pulmão/imunologia , Subpopulações de Linfócitos T/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos CD1/metabolismo , Antígenos Virais/imunologia , Diferenciação Celular , Células Cultivadas , Citotoxicidade Imunológica , Glicoproteínas/metabolismo , Humanos , Imunidade nas Mucosas , Memória Imunológica , Vacinas contra Influenza/imunologia , Cadeias alfa de Integrinas/metabolismo , Pulmão/virologia , Ativação Linfocitária , Camundongos , Camundongos SCID , Análise em Microsséries
19.
Immunity ; 38(4): 831-44, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23601689

RESUMO

Systems immunology approaches were employed to investigate innate and adaptive immune responses to influenza and pneumococcal vaccines. These two non-live vaccines show different magnitudes of transcriptional responses at different time points after vaccination. Software solutions were developed to explore correlates of vaccine efficacy measured as antibody titers at day 28. These enabled a further dissection of transcriptional responses. Thus, the innate response, measured within hours in the peripheral blood, was dominated by an interferon transcriptional signature after influenza vaccination and by an inflammation signature after pneumococcal vaccination. Day 7 plasmablast responses induced by both vaccines was more pronounced after pneumococcal vaccination. Together, these results suggest that comparing global immune responses elicited by different vaccines will be critical to our understanding of the immune mechanisms underpinning successful vaccination.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Interferons/metabolismo , Orthomyxoviridae/imunologia , Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Imunidade Adaptativa , Formação de Anticorpos , Proliferação de Células , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Interferons/genética , Células Mieloides/imunologia , Neutrófilos/imunologia , Software , Vacinação
20.
Immunity ; 36(1): 7-9, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22284415

RESUMO

Type I interferon is a family of antiviral cytokines linked to human autoimmune diseases. In this issue of Immunity, Gall et al. (2012) characterize, in a murine model of autoimmunity, the origin and progression of the type I interferon response leading to disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA