Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Am J Hum Genet ; 111(8): 1605-1625, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39013458

RESUMO

The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 9 , Anormalidades Craniofaciais , Metilação de DNA , Estudos de Associação Genética , Histona-Lisina N-Metiltransferase , Deficiência Intelectual , Fenótipo , Humanos , Histona-Lisina N-Metiltransferase/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Cromossomos Humanos Par 9/genética , Metilação de DNA/genética , Feminino , Masculino , Criança , Pré-Escolar , Antígenos de Histocompatibilidade/genética , Adolescente , Cardiopatias Congênitas/genética , Haploinsuficiência/genética , Mutação
2.
Am J Med Genet A ; 194(1): 9-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740550

RESUMO

DYRK1A Syndrome (OMIM #614104) is caused by pathogenic variations in the DYRK1A gene located on 21q22. Haploinsufficiency of DYRK1A causes a syndrome with global psychomotor delay and intellectual disability. Low birth weight, growth restriction with feeding difficulties, stature insufficiency, and microcephaly are frequently reported. This study aims to create specific growth charts for individuals with DYRK1A Syndrome and identify parameters for size prognosis. Growth parameters were obtained for 92 individuals with DYRK1A Syndrome (49 males vs. 43 females). The data were obtained from pediatric records, parent reporting, and scientific literature. Growth charts for height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were generated using generalized additive models through R package gamlss. The growth curves include height, weight, and OFC measurements for patients aged 0-5 years. In accordance with the literature, the charts show that individuals are more likely to present intrauterine growth restriction with low birth weight and microcephaly. The growth is then characterized by severe microcephaly, low weight, and short stature. This study proposes growth charts for widespread use in the management of patients with DYRK1A syndrome.


Assuntos
Deficiência Intelectual , Microcefalia , Masculino , Feminino , Criança , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Gráficos de Crescimento , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Síndrome , Índice de Massa Corporal , Estatura/genética
3.
Am J Med Genet A ; 194(7): e63559, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38421105

RESUMO

The disconnected (disco)-interacting protein 2 (DIP2) gene was first identified in D. melanogaster and contains a DNA methyltransferase-associated protein 1 (DMAP1) binding domain, Acyl-CoA synthetase domain and AMP-binding sites. DIP2 regulates axonal bifurcation of the mushroom body neurons in D. melanogaster and is required for axonal regeneration in the neurons of C. elegans. The DIP2 homologues in vertebrates, Disco-interacting protein 2 homolog A (DIP2A), Disco-interacting protein 2 homolog B (DIP2B), and Disco-interacting protein 2 homolog C (DIP2C), are highly conserved and expressed widely in the central nervous system. Although there is evidence that DIP2C plays a role in cognition, reports of pathogenic variants in these genes are rare and their significance is uncertain. We present 23 individuals with heterozygous DIP2C variants, all manifesting developmental delays that primarily affect expressive language and speech articulation. Eight patients had de novo variants predicting loss-of-function in the DIP2C gene, two patients had de novo missense variants, three had paternally inherited loss of function variants and six had maternally inherited loss-of-function variants, while inheritance was unknown for four variants. Four patients had cardiac defects (hypertrophic cardiomyopathy, atrial septal defects, and bicuspid aortic valve). Minor facial anomalies were inconsistent but included a high anterior hairline with a long forehead, broad nasal tip, and ear anomalies. Brainspan analysis showed elevated DIP2C expression in the human neocortex at 10-24 weeks after conception. With the cases presented herein, we provide phenotypic and genotypic data supporting the association between loss-of-function variants in DIP2C with a neurocognitive phenotype.


Assuntos
Haploinsuficiência , Transtornos do Desenvolvimento da Linguagem , Humanos , Masculino , Feminino , Haploinsuficiência/genética , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/patologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Pré-Escolar , Criança , Lactente , Fenótipo , Predisposição Genética para Doença
4.
J Med Genet ; 61(1): 47-56, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37495270

RESUMO

BACKGROUND: Molecular diagnosis of neurodevelopmental disorders (NDDs) is mainly based on exome sequencing (ES), with a diagnostic yield of 31% for isolated and 53% for syndromic NDD. As sequencing costs decrease, genome sequencing (GS) is gradually replacing ES for genome-wide molecular testing. As many variants detected by GS only are in deep intronic or non-coding regions, the interpretation of their impact may be difficult. Here, we showed that integrating RNA-Seq into the GS workflow can enhance the analysis of the molecular causes of NDD, especially structural variants (SVs), by providing valuable complementary information such as aberrant splicing, aberrant expression and monoallelic expression. METHODS: We performed trio-GS on a cohort of 33 individuals with NDD for whom ES was inconclusive. RNA-Seq on skin fibroblasts was then performed in nine individuals for whom GS was inconclusive and optical genome mapping (OGM) was performed in two individuals with an SV of unknown significance. RESULTS: We identified pathogenic or likely pathogenic variants in 16 individuals (48%) and six variants of uncertain significance. RNA-Seq contributed to the interpretation in three individuals, and OGM helped to characterise two SVs. CONCLUSION: Our study confirmed that GS significantly improves the diagnostic performance of NDDs. However, most variants detectable by GS alone are structural or located in non-coding regions, which can pose challenges for interpretation. Integration of RNA-Seq data overcame this limitation by confirming the impact of variants at the transcriptional or regulatory level. This result paves the way for new routinely applicable diagnostic protocols.


Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Sequenciamento do Exoma , RNA-Seq , Fluxo de Trabalho , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Mapeamento Cromossômico
5.
J Med Genet ; 60(6): 578-586, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36319078

RESUMO

PURPOSE: In this study, we describe the phenotype and genotype of the largest cohort of patients with Joubert syndrome (JS) carrying pathogenic variants on one of the most frequent causative genes, CC2D2A. METHODS: We selected 53 patients with pathogenic variants on CC2D2A, compiled and analysed their clinical, neuroimaging and genetic information and compared it to previous literature. RESULTS: Developmental delay (motor and language) was nearly constant but patients had normal intellectual efficiency in 74% of cases (20/27 patients) and 68% followed mainstream schooling despite learning difficulties. Epilepsy was found in only 13% of cases. Only three patients had kidney cysts, only three had genuine retinal dystrophy and no subject had liver fibrosis or polydactyly. Brain MRIs showed typical signs of JS with rare additional features. Genotype-phenotype correlation findings demonstrate a homozygous truncating variant p.Arg950* linked to a more severe phenotype. CONCLUSION: This study contradicts previous literature stating an association between CC2D2A-related JS and ventriculomegaly. Our study implies that CC2D2A-related JS is linked to positive neurodevelopmental outcome and low rate of other organ defects except for homozygous pathogenic variant p.Arg950*. This information will help modulate patient follow-up and provide families with accurate genetic counselling.


Assuntos
Anormalidades Múltiplas , Anormalidades do Olho , Doenças Renais Císticas , Humanos , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Retina/diagnóstico por imagem , Retina/patologia , Proteínas do Citoesqueleto
6.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639323

RESUMO

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.


Assuntos
Fator 10 de Crescimento de Fibroblastos/genética , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/mortalidade , Pneumopatias/genética , Pneumopatias/mortalidade , Transdução de Sinais/genética , Proteínas com Domínio T/genética , Variações do Número de Cópias de DNA/genética , Feminino , Fator 10 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Idade Gestacional , Humanos , Recém-Nascido , Doenças do Recém-Nascido/metabolismo , Doenças do Recém-Nascido/patologia , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Pneumopatias/metabolismo , Pneumopatias/patologia , Masculino , Herança Materna , Organogênese , Herança Paterna , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas com Domínio T/metabolismo
7.
Genet Med ; 24(12): 2475-2486, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36197437

RESUMO

PURPOSE: We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex. METHODS: Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability. RESULTS: We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed. CONCLUSION: Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology.


Assuntos
Transtorno do Espectro Autista , Displasia Ectodérmica , Transtornos do Neurodesenvolvimento , Humanos , Couro Cabeludo/anormalidades , Couro Cabeludo/metabolismo , Transtorno do Espectro Autista/genética , Células HEK293 , Fator de Transcrição AP-1/genética , Éxons/genética , Displasia Ectodérmica/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro , Antígeno 2 Relacionado a Fos/genética
8.
Clin Genet ; 102(1): 72-77, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347702

RESUMO

Pathogenic variants in IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause a variety of neurodevelopmental disorders, with intellectual disability as a uniform feature. We report five cases, each with a novel missense variant in the pleckstrin homology (PH) domain of the IQSEC2 protein. Male patients all present with moderate to profound intellectual disability, significant delays or absent language and speech and variable seizures. We describe the phenotypic spectrum associated with missense variants in PH domain of IQSEC2, further delineating the genotype-phenotype correlation for this X-linked gene.


Assuntos
Encefalopatias , Deficiência Intelectual , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Mutação , Fenótipo , Domínios de Homologia à Plecstrina
9.
Pediatr Dermatol ; 39(3): 434-437, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35258128

RESUMO

Coloboma, congenital heart disease, ichthyosiform dermatosis, mental retardation, and ear anomalies (CHIME) syndrome is a very rare autosomal recessive neuroectodermal disorder related to PIGL gene mutations. Here, we report a patient who showed an initial delay in psychomotor development and skin abnormalities consistent with CHIME syndrome but with atypical clinical features and laboratory findings. In line with our clinical suspicion, the c.500T>C, p.(Leu167Pro) variant (found in all the previously described cases of CHIME syndrome) was found on the paternal allele. A novel "likely pathogenic" PIGL missense variant (c.154G>A, p.(Asp52Asn)) was detected on the maternal allele. This case provides new insights into the clinical spectrum of CHIME syndrome and highlights the potential for phenotypic/genotypic variations.


Assuntos
Coloboma , Cardiopatias Congênitas , Deficiência Intelectual , Perda Auditiva Condutiva , Cardiopatias Congênitas/genética , Humanos , Ictiose , Deficiência Intelectual/genética , N-Acetilglucosaminiltransferases/genética , Síndromes Neurocutâneas , Fenótipo , Síndrome
10.
Hum Genet ; 140(1): 43-57, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33108537

RESUMO

Globozoospermia is a rare phenotype of primary male infertility inducing the production of round-headed spermatozoa without acrosome. Anomalies of DPY19L2 account for 50-70% of all cases and the entire deletion of the gene is by far the most frequent defect identified. Here, we present a large cohort of 69 patients with 20-100% of globozoospermia. Genetic analyses including multiplex ligation-dependent probe amplification, Sanger sequencing and whole-exome sequencing identified 25 subjects with a homozygous DPY19L2 deletion (36%) and 14 carrying other DPY19L2 defects (20%). Overall, 11 deleterious single-nucleotide variants were identified including eight novel and three already published mutations. Patients with a higher rate of round-headed spermatozoa were more often diagnosed and had a higher proportion of loss of function anomalies, highlighting a good genotype phenotype correlation. No gene defects were identified in patients carrying < 50% of globozoospermia while diagnosis efficiency rose to 77% for patients with > 50% of globozoospermia. In addition, results from whole-exome sequencing were scrutinized for 23 patients with a DPY19L2 negative diagnosis, searching for deleterious variants in the nine other genes described to be associated with globozoospermia in human (C2CD6, C7orf61, CCDC62, CCIN, DNAH17, GGN, PICK1, SPATA16, and ZPBP1). Only one homozygous novel truncating variant was identified in the GGN gene in one patient, confirming the association of GGN with globozoospermia. In view of these results, we propose a novel diagnostic strategy focusing on patients with at least 50% of globozoospermia and based on a classical qualitative PCR to detect DPY19L2 homozygous deletions. In the absence of the latter, we recommend to perform whole-exome sequencing to search for defects in DPY19L2 as well as in the other previously described candidate genes.


Assuntos
Infertilidade Masculina/genética , Proteínas de Membrana/genética , Teratozoospermia/genética , Hormônios Testiculares/genética , Estudos de Coortes , Deleção de Genes , Estudos de Associação Genética/métodos , Testes Genéticos/métodos , Homozigoto , Humanos , Masculino , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Espermatozoides/anormalidades , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA