Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 531(7595): 489-92, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27008967

RESUMO

Graphene-based nanostructures exhibit electronic properties that are not present in extended graphene. For example, quantum confinement in carbon nanotubes and armchair graphene nanoribbons leads to the opening of substantial electronic bandgaps that are directly linked to their structural boundary conditions. Nanostructures with zigzag edges are expected to host spin-polarized electronic edge states and can thus serve as key elements for graphene-based spintronics. The edge states of zigzag graphene nanoribbons (ZGNRs) are predicted to couple ferromagnetically along the edge and antiferromagnetically between the edges, but direct observation of spin-polarized edge states for zigzag edge topologies--including ZGNRs--has not yet been achieved owing to the limited precision of current top-down approaches. Here we describe the bottom-up synthesis of ZGNRs through surface-assisted polymerization and cyclodehydrogenation of specifically designed precursor monomers to yield atomically precise zigzag edges. Using scanning tunnelling spectroscopy we show the existence of edge-localized states with large energy splittings. We expect that the availability of ZGNRs will enable the characterization of their predicted spin-related properties, such as spin confinement and filtering, and will ultimately add the spin degree of freedom to graphene-based circuitry.

2.
Angew Chem Int Ed Engl ; 59(2): 839-845, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31682061

RESUMO

Little is known about metallic clusters consisting merely of a dozen of atoms or even less, despite of their importance in catalysis and crystal nucleation. Scanning transmission electron microscopy (STEM) provides direct atomic structure information but has inherently suffered from limited time resolution. We employ fast dynamic STEM combined with a spatio-temporal image denoising algorithm to explore the structure and stability of Pt clusters on carbon, which represents a highly relevant catalysis system. At room temperature, dynamic amorphous 2D structures are found, while above ≈300 °C, the clusters transform into a crystalline state. Our experimental and theoretical data reveal an unexpected strong trend of the crystalline clusters to exhibit the face-centered cubic, bulk structure of Pt with cuboidal geometries being most prominent.

3.
J Am Chem Soc ; 141(30): 12011-12020, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31299150

RESUMO

Nonbenzenoid carbocyclic rings are postulated to serve as important structural elements toward tuning the chemical and electronic properties of extended polycyclic aromatic hydrocarbons (PAHs, or namely nanographenes), necessitating a rational and atomically precise synthetic approach toward their fabrication. Here, using a combined bottom-up in-solution and on-surface synthetic approach, we report the synthesis of nonbenzenoid open-shell nanographenes containing two pairs of embedded pentagonal and heptagonal rings. Extensive characterization of the resultant nanographene in solution shows a low optical gap, and an open-shell singlet ground state with a low singlet-triplet gap. Employing ultra-high-resolution scanning tunneling microscopy and spectroscopy, we conduct atomic-scale structural and electronic studies on a cyclopenta-fused derivative on a Au(111) surface. The resultant five to seven rings embedded nanographene displays an extremely narrow energy gap of 0.27 eV and exhibits a pronounced open-shell biradical character close to 1 (y0 = 0.92). Our experimental results are supported by mean-field and multiconfigurational quantum chemical calculations. Access to large nanographenes with a combination of nonbenzenoid topologies and open-shell character should have wide implications in harnessing new functionalities toward the realization of future organic electronic and spintronic devices.

4.
Chemphyschem ; 20(18): 2348-2353, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31304992

RESUMO

We study the band gap of finite N A = 7 armchair graphene nanoribbons (7-AGNRs) on Au(111) through scanning tunneling microscopy/spectroscopy combined with density functional theory calculations. The band gap of 7-AGNRs with lengths of 8 nm and more is converged to within 50 meV of its bulk value of ≈ 2 . 3 eV , while the band gap opens by several hundred meV in very short 7-AGNRs. We demonstrate that even an atomic defect, such as the addition of one hydrogen atom at the termini, has a significant effect - in this case, lowering the band gap. The effect can be captured in terms of a simple analytical model by introducing an effective "electronic length".

5.
Chemphyschem ; 20(18): 2360-2366, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31087751

RESUMO

On-surface synthesis is a unique tool for growing low-dimensional carbon nanomaterials with precise structural control down to the atomic level. This novel approach relies on carefully designed precursor molecules, which are deposited on suitable substrates and activated to ultimately form the desired nanostructures. One of the most applied reactions to covalently interlink molecular precursors is dehalogenative aryl-aryl coupling. Despite the versatility of this approach, many unsuccessful attempts are also known, most of them associated to the poor capability of the activated precursors to couple to each other. Such failure is often related to the steric hindrance between reactants, which may arise due to their coplanarity upon adsorption on a surface. Here, we propose a copolymerization approach to overcome the limitations that prevent intermolecular homocoupling. We apply the strategy of using suitable linkers as additional reactants to the formation of fully conjugated polycyclic nanowires incorporating non-benzenoid rings.

6.
Phys Chem Chem Phys ; 21(35): 19281-19287, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451823

RESUMO

The azide-alkyne Huisgen cycloaddition has a key role in click chemistry and is configured as a powerful tool in pharmaceutical and medicinal chemistry. Although this reaction has already been largely studied, there is an ongoing debate about its mechanism. In this work we study the dynamical aspects of the process using metadynamics computer simulations. We focus on the conformational aspects that determine the course of the reaction and characterize its free energy landscape. To properly capture the thermodynamics of the process we select optimal collective variables using harmonic linear discriminant analysis. The results qualitatively confirm and explain the experimental evidence and give insights into the role of the substituents and the possible transition mechanisms.

7.
J Am Chem Soc ; 140(4): 1401-1408, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29283567

RESUMO

We unravel the origin of the recently observed striking enantioselectivity of the PdGa(111) surface with respect to the adsorption of a small organic molecule, 9-ethynylphenanthrene, using first-principles calculations. It turns out that the key ingredient to understand the experimental evidence is the appropriate description of van der Waals interactions beyond the widely employed atomic pairwise approximation. A recently developed van der Waals-inclusive density functional method, which encompasses dielectric screening effects, reveals the origin of the experimentally observed enantioselectivity and provides conclusive evidence of chiral recognition on a bimetallic surface driven by dispersion interactions. The incorporation of dielectric screening leads to a renormalization of the dispersion interaction range, allowing for the appropriate weighting of the molecule-substrate interactions at intermediate distances between 2.5 and 5 Å. Our findings have implications for the structure and stability of complex organic/inorganic systems where dielectric screening effects are expected to be of general importance.

8.
Chemistry ; 22(41): 14672-7, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27555424

RESUMO

Herein the formation of water molecules in the intermediate step of the redox reaction of porphyrins self-metalation on O/Cu(111) is demonstrated. Photoemission measurements show that the temperature on which porphyrins pick-up a substrate metal atom on O/Cu(111) is reduced by about 185±15 K with respect to the pure Cu(111). DFT calculations clearly indicate that the formation of a water molecule is less expensive than the formation of H2 on the O/Cu(111) substrate and, in some cases, it can be also exothermic.

9.
Sci Technol Adv Mater ; 17(1): 20-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877854

RESUMO

The pre-treatment of substrate surfaces prior to deposition is important for the adhesion of physical vapour deposition coatings. This work investigates Si surfaces after the bombardment by energetic Cr ions which are created in cathodic arc discharges. The effect of the pre-treatment is analysed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and in-depth X-ray photoemission spectroscopy and compared for Cr vapour produced from a filtered and non-filtered cathodic arc discharge. Cr coverage as a function of ion energy was also predicted by TRIDYN Monte Carlo calculations. Discrepancies between measured and simulated values in the transition regime between layer growth and surface removal can be explained by the chemical reactions between Cr ions and the Si substrate or between the substrate surface and the residual gases. Simulations help to find optimum and more stable parameters for specific film and substrate combinations faster than trial-and-error procedure.

10.
J Am Chem Soc ; 136(33): 11792-8, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25068445

RESUMO

Intermetallic compounds are a promising class of materials as stable and selective heterogeneous catalysts. Here, the (111) and (-1-1-1) single crystal surfaces of the PdGa intermetallic compound were studied as model catalysts with regard to the selective hydrogenation of acetylene (C2H2) to ethylene (C2H4). The distinct atomic surface structures exhibit isolated active centers of single atomic and three atomic Pd ensembles, respectively. For the two prototypal model catalyst surfaces, the adsorption sites and configurations for hydrogen (H2), acetylene, and ethylene were investigated by combining scanning tunneling microscopy, temperature-programmed desorption, and ab initio modeling. The topmost Pd surface atoms provide the preferred adsorption sites for all studied molecules. The structural difference of the Pd ensembles has a significant influence on the adsorption energy and configuration of C2H2, while the influence of the ensemble structure is weak for C2H4 and H2 adsorption. To approach the question of catalytic performance, we simulated the reaction pathways for the heterogeneous catalytic hydrogenation of acetylene on the two surfaces by means of density functional theory. Due to the geometrical separation of the Pd sites on the surfaces, the steric approach of the reactants (H and C2Hx) was found to be of importance to the energetics of the reaction. The presented study gives a direct comparison of binding properties of catalytic Pd on-top sites vs three-fold Pd hollow sites and is therefore of major relevance to the knowledge-based design of highly selective hydrogenation catalysts.


Assuntos
Acetileno/química , Ligas/química , Etilenos/síntese química , Adsorção , Catálise , Etilenos/química , Gálio/química , Hidrogenação , Paládio/química , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície
11.
Nat Mater ; 17(4): 296-297, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29531371

Assuntos
Vento
12.
Adv Sci (Weinh) ; 11(16): e2309081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353319

RESUMO

Homogenous enantioselective catalysis is nowadays the cornerstone in the manufacturing of enantiopure substances, but its technological implementation suffers from well-known impediments like the lack of endurable catalysts exhibiting long-term stability. The catalytically active intermetallic compound Palladium-Gallium (PdGa), conserving innate bulk chirality on its surfaces, represent a promising system to study asymmetric chemical reactions by heterogeneous catalysis, with prospective relevance for industrial processes. Here, this work investigates the adsorption of 10,10'-dibromo-9,9'-bianthracene (DBBA) on the PdGa:A( 1 ¯ 1 ¯ 1 ¯ $\bar{1}\bar{1}\bar{1}$ ) Pd3-terminated surface by means of scanning tunneling microscopy (STM) and spectroscopy (STS). A highly enantioselective adsorption of the molecule evolving into a near 100% enantiomeric excess below room temperature is observed. This exceptionally high enantiomeric excess is attributed to temperature activated conversion of the S to the R chiral conformer. Tip-induced bond cleavage of the R conformer shows a very high regioselectivity of the DBBA debromination. The experimental results are interpreted by density functional theory atomistic simulations. This work extends the knowledge of chirality transfer onto the enantioselective adsorption of non-planar molecules and manifests the ensemble effect of PdGa surfaces resulting in robust regioselective debromination.

13.
J Am Chem Soc ; 135(6): 2060-3, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23350872

RESUMO

Atomically precise graphene nanoribbons (GNRs) can be obtained via thermally induced polymerization of suitable precursor molecules on a metal surface. This communication discusses the atomic structure found at the termini of armchair GNRs obtained via this bottom-up approach. The short zigzag edge at the termini of the GNRs under study gives rise to a localized midgap state with a characteristic signature in scanning tunneling microscopy (STM). By combining STM experiments with large-scale density functional theory calculations, we demonstrate that the termini are passivated by hydrogen. Our results suggest that the length of nanoribbons grown by this protocol may be limited by hydrogen passivation during the polymerization step.

14.
J Am Chem Soc ; 135(41): 15270-3, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24090281

RESUMO

Chiral recognition as well as chirality transfer in supramolecular self-assembly and on-surface coordination is studied for the enantiopure 6,13-dicyano[7]helicene building block. It is remarkable that, with this helical molecule, both H-bonded chains and metal-coordinated chains can be formed on the same substrate, thereby allowing for a direct comparison of the chain bonding motifs and their effects on the self-assembly in experiment and theory. Conformational flexure and both adsorbate/adsorbent and intermolecular interactions can be identified as factors influencing the chiral recognition at the binding site. The observed H-bonded chains are chiral, however, the overall appearance of Cu-coordinated chains is no longer chiral. The study was performed via scanning tunneling microscopy, X-ray-photoelectron spectroscopy and density functional theory calculations. We show a significant influence of the molecular flexibility and the type of bonding motif on the chirality transfer in the 1D self-assembly.

15.
Langmuir ; 29(15): 4760-71, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23509926

RESUMO

The ability of amphiphilic polymers to self-assemble and form a gel or gel-like layer has been investigated by means of both experimental and theoretical studies on alkylated derivatives of poly(acrylic acid). Experiments were performed to determine the relationship between amphiphilic polymer chemistry, structure, water retention, and friction in the presence of hydrophobic substrates. The results indicate that the amphiphilic polymer forms a water-enriched, friction-reducing adsorbed layer on hydrophobic surfaces. The shear moduli and viscosities of the adsorbed layers, as determined by fitting the Voigt model to QCM-D data, were consistent with the presence of a gel. Computational studies on HPAA-12 were performed and are consistent with the presence of adsorbed conformations, in which the lowest free energy in the model corresponded to a partially adsorbed molecule, with a small fraction of hydrophobic side chains being compelled, for configurational reasons, to point into the bulk water. This would support the possibility of the formation of either a gel-like layer or surface aggregation. However, because the adsorption experiments showed no evidence of aggregation, this strongly suggests the formation of a gel.


Assuntos
Resinas Acrílicas/química , Tensoativos/química , Resinas Acrílicas/síntese química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Tamanho da Partícula , Propriedades de Superfície
16.
ACS Nano ; 17(19): 18706-18715, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37578964

RESUMO

Bottom-up-synthesized graphene nanoribbons (GNRs) are an emerging class of designer quantum materials that possess superior properties, including atomically controlled uniformity and chemically tunable electronic properties. GNR-based devices are promising candidates for next-generation electronic, spintronic, and thermoelectric applications. However, due to their extremely small size, making electrical contact with GNRs remains a major challenge. Currently, the most commonly used methods are top metallic electrodes and bottom graphene electrodes, but for both, the contact resistance is expected to scale with overlap area. Here, we develop metallic edge contacts to contact nine-atom-wide armchair GNRs (9-AGNRs) after encapsulation in hexagonal boron-nitride (h-BN), resulting in ultrashort contact lengths. We find that charge transport in our devices occurs via two different mechanisms: at low temperatures (9 K), charges flow through single GNRs, resulting in quantum dot (QD) behavior with well-defined Coulomb diamonds (CDs), with addition energies in the range of 16 to 400 meV. For temperatures above 100 K, a combination of temperature-activated hopping and polaron-assisted tunneling takes over, with charges being able to flow through a network of 9-AGNRs across distances significantly exceeding the length of individual GNRs. At room temperature, our short-channel field-effect transistor devices exhibit on/off ratios as high as 3 × 105 with on-state current up to 50 nA at 0.2 V. Moreover, we find that the contact performance of our edge-contact devices is comparable to that of top/bottom contact geometries but with a significantly reduced footprint. Overall, our work demonstrates that 9-AGNRs can be contacted at their ends in ultra-short-channel FET devices while being encapsulated in h-BN.

17.
Adv Mater ; 34(2): e2104481, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34613643

RESUMO

The production of enantiopure materials and molecules is of uttermost relevance in research and industry in numerous contexts, ranging from nonlinear optics to asymmetric synthesis. In the context of the latter, dehalogenation, which is an essential reaction step for a broad class of chemical reactions, is investigated; specifically, dehalogenation of prochiral 5-bromo-7-methylbenz(a)anthracene (BMA) on prototypical, chiral, intermetallic PdGa{111} surfaces under ultrahigh vacuum conditions. Asymmetric halogen elimination is demonstrated by combining temperature-programmed X-ray photoelectron spectroscopy, scanning probe microscopy, and density functional theory. On the PdGa{111} surfaces, the difference in debromination temperatures for the two BMA surface enantiomers amounts up to an unprecedented 46 K. The significant dependence of the dehalogenation temperature of the BMA surface enantiomers on the atomic termination of the PdGa{111} surfaces implies that the ensemble effect is pronounced in this reaction step. These findings evidence enantiospecific control and hence promote intrinsically chiral crystals for asymmetric on-surface synthesis.

18.
Nat Commun ; 13(1): 511, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082284

RESUMO

Heteroatom substitution in acenes allows tailoring of their remarkable electronic properties, expected to include spin-polarization and magnetism for larger members of the acene family. Here, we present a strategy for the on-surface synthesis of three undecacene analogs substituted with four nitrogen atoms on an Au(111) substrate, by employing specifically designed diethano-bridged precursors. A similarly designed precursor is used to synthesize the pristine undecacene molecule. By comparing experimental features of scanning probe microscopy with ab initio simulations, we demonstrate that the ground state of the synthesized tetraazaundecacene has considerable open-shell character on Au(111). Additionally, we demonstrate that the electronegative nitrogen atoms induce a considerable shift in energy level alignment compared to the pristine undecacene, and that the introduction of hydro-aza groups causes local anti-aromaticity in the synthesized compounds. Our work provides access to the precise fabrication of nitrogen-substituted acenes and their analogs, potential building-blocks of organic electronics and spintronics, and a rich playground to explore π-electron correlation.

19.
Chemistry ; 17(51): 14354-9, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22113855

RESUMO

Scratching the surface: Formation of a monolayer of 2H-tetraphenylporphyrins (2H-TPP) on Ag(111), either by sublimation of a multilayer in the range 525-600 K or by annealing (at the same temperature) a monolayer deposited at room temperature, induces a chemical modification of the molecules. Rotation of the phenyl rings into a flat conformation is observed and tentatively explained, by using DFT calculations, as a peculiar reaction due to molecular dehydrogenation.

20.
Phys Chem Chem Phys ; 13(1): 154-60, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20978664

RESUMO

The coupling process of phenyl radicals-the important intermediates in the prototypal Ullmann reaction-on Cu(111) is addressed using density functional theory. Consistent with experiments, we prove that the fragments interact attractively already at relatively large distances. An intermediate state involving a "popping-out" surface atom is reached through a non-trivial surface diffusion path. The overall process of coupling to the final biphenyl state (with a barrier of 0.38 eV) is governed by a subtle electronic mechanism that reminds the concepts postulated by Hoffmann about the alignment of molecular frontier orbitals with the metallic Fermi level. Our results can be applied to more complex surface processes in the field of molecular self-assembly.


Assuntos
Compostos de Bifenilo/química , Cobre/química , Adsorção , Compostos de Bifenilo/síntese química , Teoria Quântica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA