Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(31): 14170-14180, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895323

RESUMO

The spectroscopy and structural dynamics of a deep eutectic mixture (KSCN/acetamide) with varying water content is investigated from 2D IR (with the C-N stretch vibration of the SCN- anions as the reporter) and THz spectroscopy. Molecular dynamics simulations correctly describe the nontrivial dependence of both spectroscopic signatures depending on water content. For the 2D IR spectra, the MD simulations relate the steep increase in the cross-relaxation rate at high water content to the parallel alignment of packed SCN- anions. Conversely, the nonlinear increase of the THz absorption with increasing water content is mainly attributed to the formation of larger water clusters. The results demonstrate that a combination of structure-sensitive spectroscopies and molecular dynamics simulations provides molecular-level insights into the emergence of heterogeneity of such mixtures by modulating their composition.


Assuntos
Solventes Eutéticos Profundos , Água , Simulação de Dinâmica Molecular , Solventes/química , Espectrofotometria Infravermelho , Vibração , Água/química
2.
Phys Chem Chem Phys ; 21(37): 20606-20612, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31528919

RESUMO

In this work, the interaction between an Auramine O (AuO) fluorescent molecular rotor and natural DNA, its thermodynamic aspects and the resulting variation of the optical properties upon binding are addressed by a combined spectroscopic (UV-vis and fluorescence) and computational approach. DNA binding causes a shift in the maximum of absorption from 432 nm to 444 nm, a decrease of the extinction coefficient and a dramatic enhancement of fluorescence emission, these results being in agreement with intercalation into the polynucleotide helix. Intercalation is indeed confirmed by the thermodynamic parameters for the binding reaction (in particular, the highly negative ΔH). Theoretical modelling at the TD-DFT level was done on a simplified model system consisting of the AuO molecule intercalated between two DNA base pairs. The evolution of the calculated vertical transitions quantitatively reproduces the experimentally observed hypo- and bathochromic shifts, thus confirming the intercalation hypothesis.


Assuntos
Benzofenoneídio/química , DNA/química , Modelos Químicos , Análise Espectral , Fluorescência , Simulação de Dinâmica Molecular
3.
J Chem Phys ; 148(23): 234505, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29935500

RESUMO

The response of water re-solvating a charge-transfer dye (deprotonated Coumarin 343) after photoexcitation has been measured by means of transient THz spectroscopy. Two steps of increasing THz absorption are observed, a first ∼10 ps step on the time scale of Debye relaxation of bulk water and a much slower step on a 3.9 ns time scale, the latter of which reflecting heating of the bulk solution upon electronic relaxation of the dye molecules from the S1 back into the S0 state. As an additional reference experiment, the hydroxyl vibration of water has been excited directly by a short IR pulse, establishing that the THz signal measures an elevated temperature within ∼1 ps. This result shows that the first step upon dye excitation (10 ps) is not limited by the response time of the THz signal; it rather reflects the reorientation of water molecules in the solvation layer. The apparent discrepancy between the relatively slow reorientation time and the general notion that water is among the fastest solvents with a solvation time in the sub-picosecond regime is discussed. Furthermore, non-equilibrium molecular dynamics simulations have been performed, revealing a close-to-quantitative agreement with experiment, which allows one to disentangle the contribution of heating to the overall THz response from that of water orientation.

4.
Theor Chem Acc ; 134(12)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30519143

RESUMO

A cost-effective, robust, and reliable computational strategy is applied to simulate peak positions and band-shapes of UV-vis spectra together with the dye colours perceived by human eyes. The features of our virtual multifrequency spectrometer (VMS) relevant to this topic are sketched with special focus on the selection of density functional, vibronic model, and solvent description. Furthermore, the new VMS-Draw graphical user interface (GUI) is employed for user-friendly pre- and post-processing of the computed data. The family of indigo dyes is used as case study in view of their continued use in the field of cultural heritage, together with new promising applications for photonics and sustainable energy. After assessment of different simplified models employed in previous studies, the role of several substituents and of dimerization in tuning the colour and spectral features are analyzed in detail by means of both accurate computations and interpretative models. The results are in remarkable agreement with experiment and allow to rationalize the behaviour of this class of dyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA