Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 178(4): 835-849.e21, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31327527

RESUMO

Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.


Assuntos
Neoplasias Encefálicas/genética , Plasticidade Celular/genética , Glioblastoma/genética , Adolescente , Idoso , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Linhagem da Célula/genética , Criança , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Heterogeneidade Genética , Glioblastoma/patologia , Xenoenxertos , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Mutação , RNA-Seq , Análise de Célula Única/métodos , Microambiente Tumoral/genética
2.
Cell ; 171(7): 1611-1624.e24, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29198524

RESUMO

The diverse malignant, stromal, and immune cells in tumors affect growth, metastasis, and response to therapy. We profiled transcriptomes of ∼6,000 single cells from 18 head and neck squamous cell carcinoma (HNSCC) patients, including five matched pairs of primary tumors and lymph node metastases. Stromal and immune cells had consistent expression programs across patients. Conversely, malignant cells varied within and between tumors in their expression of signatures related to cell cycle, stress, hypoxia, epithelial differentiation, and partial epithelial-to-mesenchymal transition (p-EMT). Cells expressing the p-EMT program spatially localized to the leading edge of primary tumors. By integrating single-cell transcriptomes with bulk expression profiles for hundreds of tumors, we refined HNSCC subtypes by their malignant and stromal composition and established p-EMT as an independent predictor of nodal metastasis, grade, and adverse pathologic features. Our results provide insight into the HNSCC ecosystem and define stromal interactions and a p-EMT program associated with metastasis.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Metástase Neoplásica/patologia , Carcinoma de Células Escamosas/genética , Células Cultivadas , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Masculino , Análise de Célula Única , Microambiente Tumoral
3.
Genes Dev ; 38(5-6): 273-288, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38589034

RESUMO

Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Glioblastoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Haploinsuficiência , Glioma/genética , PTEN Fosfo-Hidrolase/genética , Diester Fosfórico Hidrolases/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética
4.
Genes Dev ; 37(3-4): 86-102, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36732025

RESUMO

Glioblastomas (GBMs) are heterogeneous, treatment-resistant tumors driven by populations of cancer stem cells (CSCs). However, few molecular mechanisms critical for CSC population maintenance have been exploited for therapeutic development. We developed a spatially resolved loss-of-function screen in GBM patient-derived organoids to identify essential epigenetic regulators in the SOX2-enriched, therapy-resistant niche and identified WDR5 as indispensable for this population. WDR5 is a component of the WRAD complex, which promotes SET1 family-mediated Lys4 methylation of histone H3 (H3K4me), associated with positive regulation of transcription. In GBM CSCs, WDR5 inhibitors blocked WRAD complex assembly and reduced H3K4 trimethylation and expression of genes involved in CSC-relevant oncogenic pathways. H3K4me3 peaks lost with WDR5 inhibitor treatment occurred disproportionally on POU transcription factor motifs, including the POU5F1(OCT4)::SOX2 motif. Use of a SOX2/OCT4 reporter demonstrated that WDR5 inhibitor treatment diminished cells with high reporter activity. Furthermore, WDR5 inhibitor treatment and WDR5 knockdown altered the stem cell state, disrupting CSC in vitro growth and self-renewal, as well as in vivo tumor growth. These findings highlight the role of WDR5 and the WRAD complex in maintaining the CSC state and provide a rationale for therapeutic development of WDR5 inhibitors for GBM and other advanced cancers.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição , Células-Tronco Neoplásicas/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética
5.
Cell ; 157(3): 580-94, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24726434

RESUMO

Developmental fate decisions are dictated by master transcription factors (TFs) that interact with cis-regulatory elements to direct transcriptional programs. Certain malignant tumors may also depend on cellular hierarchies reminiscent of normal development but superimposed on underlying genetic aberrations. In glioblastoma (GBM), a subset of stem-like tumor-propagating cells (TPCs) appears to drive tumor progression and underlie therapeutic resistance yet remain poorly understood. Here, we identify a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, and OLIG2) essential for GBM propagation. These TFs coordinately bind and activate TPC-specific regulatory elements and are sufficient to fully reprogram differentiated GBM cells to "induced" TPCs, recapitulating the epigenetic landscape and phenotype of native TPCs. We reconstruct a network model that highlights critical interactions and identifies candidate therapeutic targets for eliminating TPCs. Our study establishes the epigenetic basis of a developmental hierarchy in GBM, provides detailed insight into underlying gene regulatory programs, and suggests attendant therapeutic strategies. PAPERCLIP:


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Correpressoras/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo
6.
Semin Neurol ; 43(6): 810-824, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37963582

RESUMO

The care of patients with both high-grade glioma and low-grade glioma necessitates an interdisciplinary collaboration between neurosurgeons, neuro-oncologists, neurologists and other practitioners. In this review, we aim to detail the considerations, approaches and advances in the neurosurgical care of gliomas. We describe the impact of extent-of-resection in high-grade and low-grade glioma, with particular focus on primary and recurrent glioblastoma. We address advances in surgical methods and adjunct technologies such as intraoperative imaging and fluorescence guided surgery that maximize extent-of-resection while minimizing the potential for iatrogenic neurological deficits. Finally, we review surgically-mediated therapies other than resection and discuss the role of neurosurgery in emerging paradigm-shifts in inter-disciplinary glioma management such as serial tissue sampling and "window of opportunity trials".


Assuntos
Neoplasias Encefálicas , Glioma , Cirurgia Assistida por Computador , Humanos , Neoplasias Encefálicas/cirurgia , Recidiva Local de Neoplasia/cirurgia , Glioma/cirurgia , Cirurgia Assistida por Computador/métodos , Procedimentos Neurocirúrgicos
7.
Nature ; 539(7628): 309-313, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27806376

RESUMO

Although human tumours are shaped by the genetic evolution of cancer cells, evidence also suggests that they display hierarchies related to developmental pathways and epigenetic programs in which cancer stem cells (CSCs) can drive tumour growth and give rise to differentiated progeny. Yet, unbiased evidence for CSCs in solid human malignancies remains elusive. Here we profile 4,347 single cells from six IDH1 or IDH2 mutant human oligodendrogliomas by RNA sequencing (RNA-seq) and reconstruct their developmental programs from genome-wide expression signatures. We infer that most cancer cells are differentiated along two specialized glial programs, whereas a rare subpopulation of cells is undifferentiated and associated with a neural stem cell expression program. Cells with expression signatures for proliferation are highly enriched in this rare subpopulation, consistent with a model in which CSCs are primarily responsible for fuelling the growth of oligodendroglioma in humans. Analysis of copy number variation (CNV) shows that distinct CNV sub-clones within tumours display similar cellular hierarchies, suggesting that the architecture of oligodendroglioma is primarily dictated by developmental programs. Subclonal point mutation analysis supports a similar model, although a full phylogenetic tree would be required to definitively determine the effect of genetic evolution on the inferred hierarchies. Our single-cell analyses provide insight into the cellular architecture of oligodendrogliomas at single-cell resolution and support the cancer stem cell model, with substantial implications for disease management.


Assuntos
Células-Tronco Neoplásicas/patologia , Oligodendroglioma/genética , Oligodendroglioma/patologia , Análise de Sequência de RNA , Análise de Célula Única , Diferenciação Celular , Proliferação de Células , Variações do Número de Cópias de DNA/genética , Humanos , Isocitrato Desidrogenase/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Filogenia , Mutação Puntual
8.
bioRxiv ; 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-38659838

RESUMO

Single-cell transcriptomics has unveiled a vast landscape of cellular heterogeneity in which the cell cycle is a significant component. We trained a high-resolution cell cycle classifier (ccAFv2) using single cell RNA-seq (scRNA-seq) characterized human neural stem cells. The ccAFv2 classifies six cell cycle states (G1, Late G1, S, S/G2, G2/M, and M/Early G1) and a quiescent-like G0 state (qG0), and it incorporates a tunable parameter to filter out less certain classifications. The ccAFv2 classifier performed better than or equivalent to other state-of-the-art methods even while classifying more cell cycle states, including G0. We demonstrate that the ccAFv2 classifier is generalizable across cell types and all three germ layers by applying it to developing fetal cells. We showcased the versatility of ccAFv2 by successfully applying it to classify cells, nuclei, and spatial transcriptomics data in humans and mice, using various normalization methods and gene identifiers. We provide methods to regress the cell cycle expression patterns out of single cell or nuclei data to uncover underlying biological signals. The classifier can be used either as an R package integrated with Seurat or a PyPI package integrated with scanpy. We proved that ccAFv2 has enhanced accuracy, flexibility, and adaptability across various experimental conditions, establishing ccAFv2 as a powerful tool for dissecting complex biological systems, unraveling cellular heterogeneity, and deciphering the molecular mechanisms by which proliferation and quiescence affect cellular processes.

9.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370784

RESUMO

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.

10.
Sci Adv ; 10(23): eadj7706, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848360

RESUMO

Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Glioma , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Glioma/tratamento farmacológico , Temozolomida/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico
11.
medRxiv ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38633778

RESUMO

Grade IV glioma, formerly known as glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor, and its treatment remains challenging in part due to extensive interpatient heterogeneity in disease driving mechanisms and lack of prognostic and predictive biomarkers. Using mechanistic inference of node-edge relationship (MINER), we have analyzed multiomics profiles from 516 patients and constructed an atlas of causal and mechanistic drivers of interpatient heterogeneity in GBM (gbmMINER). The atlas has delineated how 30 driver mutations act in a combinatorial scheme to causally influence a network of regulators (306 transcription factors and 73 miRNAs) of 179 transcriptional "programs", influencing disease progression in patients across 23 disease states. Through extensive testing on independent patient cohorts, we share evidence that a machine learning model trained on activity profiles of programs within gbmMINER significantly augments risk stratification, identifying patients who are super-responders to standard of care and those that would benefit from 2 nd line treatments. In addition to providing mechanistic hypotheses regarding disease prognosis, the activity of programs containing targets of 2 nd line treatments accurately predicted efficacy of 28 drugs in killing glioma stem-like cells from 43 patients. Our findings demonstrate that interpatient heterogeneity manifests from differential activities of transcriptional programs, providing actionable strategies for mechanistically characterizing GBM from a systems perspective and developing better prognostic and predictive biomarkers for personalized medicine.

12.
Acta Neuropathol Commun ; 12(1): 64, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650010

RESUMO

Glioblastoma (GBM) remains an untreatable malignant tumor with poor patient outcomes, characterized by palisading necrosis and microvascular proliferation. While single-cell technology made it possible to characterize different lineage of glioma cells into neural progenitor-like (NPC-like), oligodendrocyte-progenitor-like (OPC-like), astrocyte-like (AC-like) and mesenchymal like (MES-like) states, it does not capture the spatial localization of these tumor cell states. Spatial transcriptomics empowers the study of the spatial organization of different cell types and tumor cell states and allows for the selection of regions of interest to investigate region-specific and cell-type-specific pathways. Here, we obtained paired 10x Chromium single-nuclei RNA-sequencing (snRNA-seq) and 10x Visium spatial transcriptomics data from three GBM patients to interrogate the GBM microenvironment. Integration of the snRNA-seq and spatial transcriptomics data reveals patterns of segregation of tumor cell states. For instance, OPC-like tumor and NPC-like tumor significantly segregate in two of the three samples. Our differentially expressed gene and pathway analyses uncovered significant pathways in functionally relevant niches. Specifically, perinecrotic regions were more immunosuppressive than the endogenous GBM microenvironment, and perivascular regions were more pro-inflammatory. Our gradient analysis suggests that OPC-like tumor cells tend to reside in areas closer to the tumor vasculature compared to tumor necrosis, which may reflect increased oxygen requirements for OPC-like cells. In summary, we characterized the localization of cell types and tumor cell states, the gene expression patterns, and pathways in different niches within the GBM microenvironment. Our results provide further evidence of the segregation of tumor cell states and highlight the immunosuppressive nature of the necrotic and perinecrotic niches in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Transcriptoma , Microambiente Tumoral , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
13.
Nat Cancer ; 4(9): 1258-1272, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537301

RESUMO

The accepted paradigm for both cellular and anti-tumor immunity relies upon tumor cell killing by CD8+ T cells recognizing cognate antigens presented in the context of target cell major histocompatibility complex (MHC) class I (MHC-I) molecules. Likewise, a classically described mechanism of tumor immune escape is tumor MHC-I downregulation. Here, we report that CD8+ T cells maintain the capacity to kill tumor cells that are entirely devoid of MHC-I expression. This capacity proves to be dependent instead on interactions between T cell natural killer group 2D (NKG2D) and tumor NKG2D ligands (NKG2DLs), the latter of which are highly expressed on MHC-loss variants. Necessarily, tumor cell killing in these instances is antigen independent, although prior T cell antigen-specific activation is required and can be furnished by myeloid cells or even neighboring MHC-replete tumor cells. In this manner, adaptive priming can beget innate killing. These mechanisms are active in vivo in mice as well as in vitro in human tumor systems and are obviated by NKG2D knockout or blockade. These studies challenge the long-advanced notion that downregulation of MHC-I is a viable means of tumor immune escape and instead identify the NKG2D-NKG2DL axis as a therapeutic target for enhancing T cell-dependent anti-tumor immunity against MHC-loss variants.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Humanos , Camundongos , Antígenos/metabolismo , Linfócitos T CD8-Positivos/patologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo
14.
NPJ Precis Oncol ; 6(1): 55, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941215

RESUMO

Glioblastoma (GBM) is a heterogeneous tumor made up of cell states that evolve over time. Here, we modeled tumor evolutionary trajectories during standard-of-care treatment using multi-omic single-cell analysis of a primary tumor sample, corresponding mouse xenografts subjected to standard of care therapy, and recurrent tumor at autopsy. We mined the multi-omic data with single-cell SYstems Genetics Network AnaLysis (scSYGNAL) to identify a network of 52 regulators that mediate treatment-induced shifts in xenograft tumor-cell states that were also reflected in recurrence. By integrating scSYGNAL-derived regulatory network information with transcription factor accessibility deviations derived from single-cell ATAC-seq data, we developed consensus networks that modulate cell state transitions across subpopulations of primary and recurrent tumor cells. Finally, by matching targeted therapies to active regulatory networks underlying tumor evolutionary trajectories, we provide a framework for applying single-cell-based precision medicine approaches to an individual patient in a concurrent, adjuvant, or recurrent setting.

15.
Cancers (Basel) ; 13(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202449

RESUMO

Brain tumors are among the most lethal tumors. Glioblastoma, the most frequent primary brain tumor in adults, has a median survival time of approximately 15 months after diagnosis or a five-year survival rate of 10%; the recurrence rate is nearly 90%. Unfortunately, this prognosis has not improved for several decades. The lack of progress in the treatment of brain tumors has been attributed to their high rate of primary therapy resistance. Challenges such as pronounced inter-patient variability, intratumoral heterogeneity, and drug delivery across the blood-brain barrier hinder progress. A comprehensive, multiscale understanding of the disease, from the molecular to the whole tumor level, is needed to address the intratumor heterogeneity resulting from the coexistence of a diversity of neoplastic and non-neoplastic cell types in the tumor tissue. By contrast, inter-patient variability must be addressed by subtyping brain tumors to stratify patients and identify the best-matched drug(s) and therapies for a particular patient or cohort of patients. Accomplishing these diverse tasks will require a new framework, one involving a systems perspective in assessing the immense complexity of brain tumors. This would in turn entail a shift in how clinical medicine interfaces with the rapidly advancing high-throughput (HTP) technologies that have enabled the omics-scale profiling of molecular features of brain tumors from the single-cell to the tissue level. However, several gaps must be closed before such a framework can fulfill the promise of precision and personalized medicine for brain tumors. Ultimately, the goal is to integrate seamlessly multiscale systems analyses of patient tumors and clinical medicine. Accomplishing this goal would facilitate the rational design of therapeutic strategies matched to the characteristics of patients and their tumors. Here, we discuss some of the technologies, methodologies, and computational tools that will facilitate the realization of this vision to practice.

16.
Nat Biotechnol ; 39(7): 819-824, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33846646

RESUMO

Methods for quantifying gene expression1 and chromatin accessibility2 in single cells are well established, but single-cell analysis of chromatin regions with specific histone modifications has been technically challenging. In this study, we adapted the CUT&Tag method3 to scalable nanowell and droplet-based single-cell platforms to profile chromatin landscapes in single cells (scCUT&Tag) from complex tissues and during the differentiation of human embryonic stem cells. We focused on profiling polycomb group (PcG) silenced regions marked by histone H3 Lys27 trimethylation (H3K27me3) in single cells as an orthogonal approach to chromatin accessibility for identifying cell states. We show that scCUT&Tag profiling of H3K27me3 distinguishes cell types in human blood and allows the generation of cell-type-specific PcG landscapes from heterogeneous tissues. Furthermore, we used scCUT&Tag to profile H3K27me3 in a patient with a brain tumor before and after treatment, identifying cell types in the tumor microenvironment and heterogeneity in PcG activity in the primary sample and after treatment.


Assuntos
Cromatina/fisiologia , Proteínas do Grupo Polycomb/metabolismo , Análise de Célula Única , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Diferenciação Celular , Cromatina/genética , Células-Tronco Embrionárias , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células K562 , Proteínas do Grupo Polycomb/genética
17.
Neuron ; 109(18): 2914-2927.e5, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534454

RESUMO

In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The unique morpho-electric properties of these neurons have been mainly described in rodents, where retrograde tracers or transgenic lines can label them. Similar labeling strategies are infeasible in the human neocortex, rendering the translational relevance of findings in rodents unclear. We leveraged the recent discovery of a transcriptomically defined L5 ET neuron type to study the properties of human L5 ET neurons in neocortical brain slices derived from neurosurgeries. Patch-seq recordings, where transcriptome, physiology, and morphology were assayed from the same cell, revealed many conserved morpho-electric properties of human and rodent L5 ET neurons. Divergent properties were often subtler than differences between L5 cell types within these two species. These data suggest a conserved function of L5 ET neurons in the neocortical hierarchy but also highlight phenotypic divergence possibly related to functional specialization of human neocortex.


Assuntos
Dendritos/fisiologia , Morfogênese/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Células Piramidais/fisiologia , Transcriptoma/fisiologia , Potenciais de Ação/fisiologia , Adulto , Animais , Feminino , Humanos , Macaca nemestrina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp/métodos
18.
Cancers (Basel) ; 13(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383817

RESUMO

Brain metastases are the most common intracranial malignant tumor in adults and are a cause of significant morbidity and mortality for cancer patients. Large brain metastases, defined as tumors with a maximum dimension >2 cm, present a unique clinical challenge for the delivery of stereotactic radiosurgery (SRS) as patients often present with neurologic symptoms that require expeditious treatment that must also be balanced against the potential consequences of surgery and radiation therapy-namely, leptomeningeal disease (LMD) and radionecrosis (RN). Hypofractionated stereotactic radiotherapy (HSRT) and pre-operative SRS have emerged as novel treatment techniques to help improve local control rates and reduce rates of RN and LMD for this patient population commonly managed with post-operative SRS. Recent literature suggests that pre-operative SRS can potentially half the risk of LMD compared to post-operative SRS and that HSRT can improve risk of RN to less than 10% while improving local control when meeting the appropriate goals for biologically effective dose (BED) and dose-volume constraints. We recommend a 3- or 5-fraction regimen in lieu of SRS delivering 15 Gy or less for large metastases or resection cavities. We provide a table comparing the BED of commonly used SRS and HSRT regimens, and provide an algorithm to help guide the management of these challenging clinical scenarios.

19.
Oper Neurosurg (Hagerstown) ; 17(1): E23-E28, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169838

RESUMO

BACKGROUND AND IMPORTANCE: Refractory ischemic symptoms in moyamoya disease are a challenging problem, particularly in situations in which multiple direct and indirect revascularization techniques have already been employed. In addition, revascularization of the parietal lobes is difficult, as this area is a watershed between the middle cerebral artery and posterior cerebral artery distributions. CLINICAL PRESENTATION: This is the case of a 50-yr-old woman with hemibody sensorimotor deficits, who had previously undergone bilateral arterial bypass and temporalis myosynangiosis. A method for indirect surgical cerebral revascularization is described, utilizing a rotated and tunneled sternocleidomastoid flap. The perfused muscle is approximated to the cortical surface, with adjacent sulci dissected to expose the underlying vasculature. After sternocleidomastoid encephalomyosynangiosis, the patient experienced symptomatic improvement, along with the appearance of new pial collateral vasculature on diagnostic cerebral angiography. Pre- and postoperative dynamic perfusion computed tomography with acetazolamide challenge demonstrate an increase in cerebral blood flow and decrease in mean transit time, as well as improved cerebrovascular reserve. CONCLUSION: Sternocleidomastoid encephalomyosynangiosis using a tunneled muscle flap is a useful method for revascularization of the parietal and occipital lobes, particularly for refractory moyamoya in cases where a variety of other options have been exhausted.


Assuntos
Revascularização Cerebral/métodos , Doença de Moyamoya/cirurgia , Feminino , Humanos , Pessoa de Meia-Idade , Resultado do Tratamento
20.
World Neurosurg ; 112: 161-165, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29409926

RESUMO

Craniectomy is a frequently performed neurosurgical procedure, and coverage of the cranial defect is necessary for protection of the underlying brain, cosmesis, and patient satisfaction. We report a new technique for intraoperative in situ synthetic cranioplasty that provides one-step resection of skull osteomas and reconstruction of cranial defects. Strategies of intraoperative cranioplasty are reviewed. A 48-year-old man who presented with a suspected benign osteoma over his forehead was offered surgical excision and primary cranioplasty in a one-step procedure using hydroxyapatite bone cement, a dural prosthetic, and a resorbable plate. Following craniectomy around the lesion, there was evidence of dural and bone involvement. The craniectomy was enlarged, and the involved dura was resected. SYNTHECEL dura repair was used to repair the dural defect and at the same time fashioned to form a receptacle for the cranioplasty by fixation of the dural substrate to the cut vertical bone edges. DirectInject hydroxyapatite bone cement was used to fill the receptacle and contoured to the curvature of the adjacent skull. A Delta resorbable plate was then placed over the bone cement and fixed to the skull. This technique provided a satisfactory cosmetic outcome following craniectomy for benign skull tumor excision. When possible, one-step surgery with primary cranioplasty should be considered.


Assuntos
Cimentos Ósseos , Craniotomia/métodos , Osteoma/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Neoplasias Cranianas/cirurgia , Crânio/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA